
PARTIALLY HYPERBOLIC DYNAMICS IN DIMENSION 3

PABLO D. CARRASCO, FEDERICO RODRIGUEZ-HERTZ, JANA RODRIGUEZ-HERTZ,
AND RAÚL URES

Abstract. Partial hyperbolicity appeared in the sixties as a natural generaliza-
tion of hyperbolicity. In the last 20 years in this area there has been great activity.
Here we survey the state of the art in some topics, focusing especially in partial
hyperbolicity in dimension 3. The reason for this is not only that it is the smallest
dimension in which non-degenerate partial hyperbolicity can occur, but also that
the topology of 3-manifolds influences this dynamics in revealing ways.

1. Introduction

Partial hyperbolicity was introduced in the late sixties as a generalization of the
classical notion of hyperbolicity. In hyperbolic systems, the tangent bundle splits
into two directions that are invariant under the derivative, one, the stable direction,
contracted, and the other, the unstable direction, expanded. More precisely, a dif-
feomorphism of a compact manifold f : M → M is hyperbolic if the tangent bundle
splits as TM = Es ⊕ Eu, where Df(x)Es

x = Es
f(x) and Df(x)Eu

x = Eu
f(x), and for

each pair of unit vectors vs ∈ Es
x and vu ∈ Eu

x we have:

‖Df(x)vs‖ < 1 < ‖Df(x)vu‖
The simplest examples of this behavior are the hyperbolic (also known as Anosov)
automorphisms on tori.

Partially hyperbolic diffeomorphisms, in turn, allow one extra, center direction,
which is neither as expanded as the unstable one nor as contracted as the stable one.
Again the simplest examples are certain automorphisms of the torus, for instance:

A =

 2 1 0
1 1 0
0 0 1

 .

This matrix has three eigenvalues: λ > 1, λ−1 and 1. Thus, the associated auto-
morphism of T3 has three invariant bundles paralell to its 3 eigendirections. Two of
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these bundles, the ones associated to λ and λ−1, have a hyperbolic behavior and the
one associated to 1 corresponds to the center direction.

Another classical (and more interesting) example in dimension 3 comes from the
action of the diagonal subgroup on quotients of G = PSL(2,R). Consider a left
invariant riemannian metric on G.

Statement: The right multiplication by d1 =

(
e

1
2 0

0 e−
1
2

)
induces a partially

hyperbolic diffeomorphism of G, ψ := Rd1 : G→ G, ψ(g) := Rd1(g) = gd1.
Let

u−t =

(
1 t
0 1

)
, u+t =

(
1 0
t 1

)
; dt =

(
e

t
2 0

0 e−
t
2

)
;

be respectively, the stable horcocycle, the unstable horocycle and the diagonal 1-
parameter groups. Consider the foliations generated by these 1-parameter groups

F s(g) =
{
u−t g; t ∈ R

}
; Fu(g) =

{
u+t g; t ∈ R

}
; F c(g) = {dtg; t ∈ R} .

ψ respectively contracts, expands and is an isometry on the leaves of these foliations.
Notice that

u±s dt = dtu
±
e±tsdt. (1.1)

This equation shows that ψ intertwines leaves of the foliation F s and similarly with
Fu, moreover ψ preserves the leaves of F c. We also get from equation 1.1 that

ψ(gu±s ) = gu±s d1 = gd1u
±
e±1s = ψ(g)u±e±1s.

Remember we choose a left invariant metric on G, so, using its distance function we
obtain that

d(ψ(gu±s ), ψ(g)) = d(gd1u
±
e±1s, gd1) = d(u±e±1s, e) = d(gu±e±1s, g) (1.2)

and

d(ψ(gdt), ψ(g)) = d(gdtd1, gd1) = d(gd1dt, gd1) = d(dt, e) = d(gdt, g). (1.3)

From equation 1.2 we obtain that the leaves of F s are exponentially contracted in the
future and the leaves of Fu are exponentially contracted in the past by ψ. Equation
1.3 shows that ψ acts isometrically on the leaves of F c. Define Eσ

g = TgFσ, σ = s, u, c
and observe that we obtain a splitting

Es
g ⊕ Eu

g ⊕ Ec = TgG

where the first direction is exponentially contracted, the second is exponentially
expanded and the third one is isometric.

Let us give a different description of the invariant bundles. Let us describe first
what would be the partially hyperbolic splitting for the tangent space to the identity
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element e =

(
1 0
0 1

)
. The tangent space to the identity element TeG is naturally

identified with the Lie algebra of G, g = sl2. On g we have three distinguished
elements

U− =

(
0 1
0 0

)
; U+

(
0 0
1 0

)
; D =

(
1
2

0
0 −1

2

)
.

Observe that

[D,U+] = U+; [D,U−] = −U−; [U+, U−] = 2D. (1.4)

Let Eu
e = span{U+}, Es

e = span{U−} and Ec
e = span{D}. Clearly U+, U−, D are

linearly independent and hence

Es
e ⊕ Eu

e ⊕ Ec
e = g = TeG.

Given g ∈ G let us define Rg : G→ G by Rg(h) = hg. Let DeRg : TeG→ TgG be the
derivative of Rg over the identity and define Eσ

g = DeRg(E
σ
e ), σ = s, c, u. Let us show

that these bundles are accordingly the unstable, stable and center bundle. To this
end we shall use Lg : G→ G, Lg(h) = gh, the left translation. Since the riemannian
metric we choose was a left invariant metric, we get that Lg is an isometry for every
g. Observe that (Lg)

−1 = Lg−1 .
Both ψ and the right group actions remain well-defined if we take a quotient of

PSL(2,R) under the left action of a lattice Γ and since the riemannian metric we
choose is left invariant, we obtain a riemannian metric on the quotient Γ\PSL(2,R).
The contraction and expansion properties are hence preserved on this quotient also.
Recall that the 3-manifold Γ\PSL(2,R) can be naturally identified with the unit
tangent bundle of a closed surface (compact in case Γ is co-compact) and ψ with the
time-one map of the geodesic flow of a metric of constant negative curvature on this
surface (again the extra direction is given by the direction of the diagonal flow). See
[KH95].

Precisely, we say that a diffeomorphism f of a closed manifold M is partially
hyperbolic if the tangent bundle splits as TM = Es ⊕ Ec ⊕ Eu, where Df(x)Eu

x =
Eu
f(x), Df(x)Ec

x = Ec
f(x) and Df(x)Es

x = Es
f(x), and for each unit vector vs ∈ Es

x,
vc ∈ Ec

x and vu ∈ Eu
x we have:

‖Df(x)vs‖ < 1 < ‖Df(x)vu‖, and (1.5)

‖Df(x)vs‖ < ‖Df(x)vc‖ < ‖Df(x)vu‖. (1.6)

The set of partially hyperbolic diffeomorphisms is C1-open in Diff1(M). See, for
instance, Theorem 2.15 in [HPS77]. In other words, a C1-perturbation of a partially
hyperbolic diffeomorphism is partially hyperbolic.
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1.1. More examples. The examples given in the Introduction fall into more general
classes:

1.1.1. Time-one maps of Anosov flows: Consider an Anosov flow in a 3-manifold
φt : M → M such that the tangent bundle of M splits into 3 sub-bundles invariant
under Dφt: TM = Es ⊕X ⊕ Eu, where X is the direction tangent to the flow, and
such that for each unit vector vs ∈ Es and vu ∈ Eu

‖Dφtvs‖ < 1 < ‖Dφtvu‖.

Then the time-one map of the flow φt is a partially hyperbolic diffeomorphism (ex-
ercise).

Examples of this kind of partially hyperbolic diffeomorphism are the ones induced
by the diagonal action on PSL(2,R) mentioned above.

As a different type of example consider the suspension of an Anosov map A : T2 →
T2 by the constant roof function one: Let A be a hyperbolic automorphism on T2,
and consider in T2×R the following equivalence relation: (x, t+ 1) ∼ (Ax, t). Then
M = T2×R|∼ is a smooth manifold, and f([x, t]) = [x, t+1] is a partially hyperbolic
diffeomorphism.

We remark that these examples are truly different: for the second one the distri-
bution Eu ⊕ Es is integrable whereas for the first one it is not.

Note that in both examples the corresponding Anosov flow is transitive, but there
also exist non transitive Anosov flows [FW80a]. There is in fact a huge zoo of Anosov
flows, see for instance [Bar98], [BL94], [Fen94], [Fri83], [HT80]; so classification of
time-one maps of these flows is naturally a difficult task.

1.1.2. Skew-products: Another example of partially hyperbolic diffeomorphism is a
certain kind of skew-product that is a circle extension over the two torus of the form
f(x, θ) = (Bx, h(x, θ)) where B is a hyperbolic automorphism of the 2-torus and
h(x, .) are circle rotations. The resulting ambient manifold is a 3-nilmanifold. In
case the product is direct, the ambient manifold is the 3-torus. To this class belongs
A, the 3-toral automorphism defined at the beginning of this introduction.

1.1.3. DA-diffeomorphisms: A DA- partially hyperbolic diffeomorphism is one that
is isotopic to an Anosov one. By a result of Franks, DA-diffeomorphisms are semi-
conjugate to Anosov diffeomorphisms. The prototypical example in this class is
Mañé’s example [Mañ78]. It is obtained by taking a linear Anosov map in T3 with
eigenvalues λss < 1 < λu < λuu, and making a bifurcation of the origin into three
points along the weak unstable direction (See fig. 1.1.3). The resulting map is a
dynamically coherent (robustly) transitive partially hyperbolic diffeomorphism.
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Figure 1. Mañé’s DA-partially hyperbolic diffeomorphism

Acknowledgements. The authors want to thank Amie Wilkinson for her careful
review of this manuscript and for many valuable suggestions she made that helped
to improve its readability.

2. Some open problems

Partial hyperbolicity appeared as a natural generalization of hyperbolicity. One
main motivation to study partially hyperbolic systems was ergodicity. A system
f : M → M preserving a measure m is ergodic when, in average, any two events
tend to be independient, that is, for any two measurable sets A and B we have

lim
n→∞

1

N

N−1∑
n=0

m(fn(A) ∩B) = m(A)m(B)

Ergodicity is therefore an interesting property from the physical point of view. Since
conservative hyperbolic systems are ergodic [AS67], it was asked whether adding
some hyperbolicty to a system and then perturbing would generate ergodicity in
the whole system. Concretely, Pugh and Shub [PS97] asked if taking any system,
taking the product of it by a sufficiently strong hyperbolic system (hence obtaining
a partially hyperbolic system) and then making a small perturbation would yield
ergodicity in a robust way. They went further to state Conjecture 2.2 below. The
area of partial hyperbolicity has become very active since then, and other aspects
have attracted interest as well. These are also stated below.

2.1. Ergodicity. As stated above, one problem in partially hyperbolic dynamics
is studying the ergodicity of conservative systems, to be more precise, of Cr- dif-
feomorphisms preserving a smooth volume. We shall denote conservative systems
by Diffrm(M), where m denotes the probability measure arising from this smooth
volume. An equivalent definition of ergodic system f is that any measurable set A
satisfying f(A) = A must also satisfy either m(A) = 1 or m(A) = 0. In other words,
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an ergodic system is one not admitting an invariant measurable set with intermediate
measure.

An example of a non-ergodic partially hyperbolic diffeomorphism is the toral auto-
morphism A defined at the beginning of the introduction. This automorphism can be
seen in the following way: A = B × id, where B is the automorphism on the 2-torus

generated by the matrix

(
2 1
1 1

)
, and id is the identity on the circle. Indeed, any

interval of the circle times the 2-torus is an invariant set with intermediate measure.
One can easily perturb this system to obtain an ergodic partially hyperbolic one.

For instance g = B×(irrational rotation). However, this new system g can be easily
perturbed to obtain again non-ergodic diffeomorphisms. It is, in fact approximated
by diffeomorphisms g′ = B×(rational rotation), which are non-ergodic.

Pugh and Shub were the first to conjecture that ergodicity is in fact very abundant
in the partially hyperbolic world, a conjecture that remains open today (Conjecture
2.2). As a matter of fact, this conjecture was made public for the first time in
Montevideo, in 1995 [PS96]. We thank Keith Burns for recalling this fact, and Mike
Shub for confirming it. Pugh and Shub considered not only ergodicity, but a stronger
concept, namely:

Definition 2.1. A conservative C2 diffeomorphism f : M →M is stably ergodic (in
Diff1

m(M)) if there exists U ⊂ Diff1
m(M), a neighborhood of f , such that every g ∈ U

of class C2 is ergodic.

Until 1994, the only known examples of stably ergodic diffeomorphisms were
Anosov diffeomorphisms, that is, hyperbolic ones. In 1994, Grayson, Pugh and
Shub found the first non-hyperbolic examples.

A year later, Pugh and Shub conjectured the following:

Conjecture 2.2 (Pugh-Shub (1995)[PS96]). Stable ergodicity is Cr-dense among
volume preserving partially hyperbolic diffeomorphisms, for all r > 1.

Pugh and Shub suggested a program in order to prove their conjecture. It involves
accessibility, defined below.

Definition 2.3. Two points x and y are in the same accessibility class if there
is a path piece-wise tangent to Es or Eu joining them. The partially hyperbolic
diffeomorphism f has the accessibility property if there is only one accessibility class.
The diffeomorphism has the essential accessibility property if any measurable set that
is a union of accessibility classes has either full or null measure.

In the picture below, the points x, y and z are in the same accessibility class.
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Exercise 2.4. Prove that the example of the action of the diagonal subgroup defined
in Page 2 has the accessibility property.

Obviously, accessibility implies essential accessibility, but the converse is not true.

Exercise 2.5. Show that the automorphism on T3 defined by

A =

 0 0 1
0 1 −1
−1 −1 5


has the essential accessibility property, but it does not have the accessibility property.

Conjecture 2.6 (Pugh-Shub). If f is a Cr conservative diffeomorphism, with r > 1,
(essential) accessibility implies ergodicity.

Conjecture 2.7 (Pugh-Shub). Stable accessibility is Cr-dense among volume pre-
serving partially hyperbolic diffeomorphisms, for r > 1.

In [BW10], Burns and Wilkinson proved Conjecture 2.6 under the additional condi-
tion of center bunching (which means that the hyperbolicity of the Es⊕Eu-bundle is
stronger than the non-conformality of Ec). Previously, Dolgopyat-Wilkinson [DW03]
had proven that stable accessibility is C1-dense. Recently, Avila, Crovisier and
Wilkinson have shown that stable ergodicity is C1-dense among Cr partially hyper-
bolic diffeomorphisms, with r > 1.

Theorem 2.8 (Avila-Crovisier-Wilkinson [ACW14]). Stable ergodicity is C1-dense
among Cr volume preserving partially hyperbolic diffeomorphisms, r > 1.

In their work, they build on an approach by [HHTU11] where this result was proven
for the case of two-dimensional center bundle. In [HHTU11] there were introduced
the Pesin homoclinic classes, which were shown to be hyperbolic ergodic components
of m, these classes were made into one by the use of blenders. The use of this
technique for center bundles of higher dimensions is a non-trivial fact, which was
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overcome by [ACW14] by using a different kind of blenders, introduced by Moreira
and Silva [MS12].

Other important advance is Burns-Dolgopyat-Pesin [BDP02], who proved some
version of 2.6: essential accessibility and positive center Lyapunov exponents imply
stable ergodicity.

In [HHU08b], Conjecture 2.2 was proven for one-dimensional center bundle. In
particular, it holds:

Theorem 2.9 (Hertz-Hertz-Ures [HHU08b]). Stable ergodicity is C∞-dense among
volume preserving partially hyperbolic diffeomorphisms on 3-manifolds.

In sum, the vast majority of 3-dimensional partially hyperbolic diffeomorphisms
are ergodic and moreover stably ergodic. Hence one could ask the following: can we
classify the non-ergodic partially hyperbolic diffeomorphisms? And also: are there
manifolds where all partially hyperbolic diffeomorphisms are ergodic? Can we classify
all the 3-manifolds admiting non-ergodic partially hyperbolic diffeomorphisms?

A first evidence in this direction was obtained in [HHU08a]:

Theorem 2.10 (Hertz-Hertz-Ures). If N is a 3-nilmanifold other than T3, then all
conservative partially hyperbolic diffeomorphisms are ergodic.

The proof of this theorem involves the study of accessibility classes defined above.
It follows from [BW10] and [HHU08b] that for C2-partially hyperbolic diffeomor-
phisms in 3-dimensional manifolds, accessibility implies ergodicity. This fact is very
interesting, since it allows to convert an ergodic problem into a geometric problem:
the study of the set of accessibility classes; in other words, if the system has only
one accessibility class, then it is ergodic. In Section 3 a better description of these
sets in 3-manifolds is given.

While proving Theorem 2.10, we got the impression that the only obstruction to
ergodicity is the existence of a proper compact accessibility class:

Conjecture 2.11 (Ergodic conjecture: Hertz-Hertz-Ures (2008)). If a conserva-
tive partially hyperbolic diffeomorphism of a 3-manifold is non-ergodic, then there is
a 2-torus tangent to Es ⊕ Eu.

The importance of this kind of hyperbolic sub-dynamics will become apparent
later on, see Section 6. As we will see, these tori seem to be “behind” a lot of
interesting behavior in partially hyperbolic dynamics. And moreover, not every
orientable manifold can support any such sub-dynamics. In order to describe the
3-manifolds admitting these 2-tori, let us recall the concept of mapping torus: If N
is a closed manifold, and g : N → N is a diffeomorphism, we define the mapping
torus of g as the manifold obtained by identifying in N × [0, 1] the points (x, 1) with
(g(x), 0).
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As examples of these we can mention the 3-nilmanifolds, which can be seen as the

mapping tori of automorphisms of the form

(
1 k
0 1

)
, with k ∈ Z. The particular

case k = 0 gives the 3-torus. Examples of solvmanifolds are the mapping tori of
hyperbolic automorphisms A : T2 −→ T2.

Theorem 2.12 ([HHU11]). If a partially hyperbolic diffeomorphism f : M3 → M3

has a 2-dimensional embedded torus T which is tangent either to Es⊕Eu, Ec⊕Eu or
Ec⊕Es, then the ambient manifold M3 can only be one of the following possibilities:

(1) the 3-torus T3

(2) the mapping torus of −id : T2 → T2

(3) the mapping tori of hyperbolic automorphisms on 2-tori

Figure 2. (1) The 3-torus (2) The mapping torus of −Id (3) The
mapping torus of an hyperbolic automorphism.

In the three cases it is possible to find partially hyperbolic dynamics with em-
bedded tori tangent to Es ⊕ Eu or Ec ⊕ Eu (Ec ⊕ Es is analogous). We refer the
reader to Section 4 to see how a torus tangent to Ec ⊕ Eu can be built in any of
these examples. Finding a partially hyperbolic diffeomorphism with a torus tangent
to Es ⊕ Eu in cases (1) and (3) is trivial, in case (2), it is enough to consider a
hyperbolic automorphism on T2, B, and take the diffeomorphism f([x, t]) = [Bx, t].
This is the desired partially hyperbolic diffeomorphism.

If Conjecture 2.11 is true, there would be very few 3-manifolds supporting non-
ergodic partially hyperbolic dynamics. We state this explicitly as a weaker conjec-
ture:

Conjecture 2.13 (Weak ergodic conjecture: Hertz-Hertz-Ures (2008)). The
only orientable 3-manifolds that admit a non-ergodic conservative partially hyperbolic
diffeomorphism are:

(1) the 3-torus T3

(2) the mapping torus of −id : T2 → T2

(3) the mapping tori of hyperbolic automorphisms on 2-tori

The following is also open:
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Problem 2.14. Let f be a conservative non-ergodic partially hyperbolic diffeomor-
phism in any of the manifolds (1), (2), (3) stated in Theorem 2.12. Prove that there
exists a torus tangent to Es ⊕ Eu.

In Section 3 we collect the advances in this conjecture to the best of our knowledge,
and a description of the set of accessibility classes.

2.2. Dynamical coherence. In partially hyperbolic dynamics, the strong bundles
Es and Eu are always integrable; that is, there are invariant foliations W s and W u,
the stable and unstable foliations, that are tangent to each of the strong bundles (see,
for instance [BP74, HPS77]). However, the center bundle, Ec, can be integrable or
not. In fact, as Wilkinson noticed in [Wil98], the Anosov example of A. Borel, men-
tioned by Smale in [Sma67], when viewed as a partially hyperbolic diffeomorphism,
has a non-integrable center bundle. The Borel-Smale example is explained in detail
in [BW08]. For the sake of completeness, let us briefly mention what it is about.

2.2.1. A non-dynamically coherent example. The aforementioned example is, in fact,
a non-toral Anosov automorphism on a six-dimensional nilmanifold. Let G1 and G2

be copies of the three dimensional simply connected nonabelian nilpotent Lie group.
And consider bases Xi, Yi, Zi of the corresponding Lie algebras Gi, i = 1, 2, with the
bracket condition

[X1, Y1] = Z1 [X2, Y2] = Z2 (2.7)

Consider now a hyperbolic automorphism A ∈ SL(2,Z), and let λ > 1 be one of its
eigenvalues. Consider f such that the derivative acts over the Lie algebra as follows:

X1 7→ λX1 X2 7→ λ−1X2

Y1 7→ λ2Y1 Y2 7→ λ−2Y2

Z1 7→ λ3Z1 Z2 7→ λ−3Z2

The next step (which we will not explain) is to find a lattice Γ of G = G1 × G2,
such that it is invariant, so that the whole construction yields a diffeomorphism over
the six-dimensional nilmanifold G/Γ (the coset space).

This example is, as a matter of fact, an Anosov diffeomorphism. But we may
also look at it as a partially hyperbolic diffeomorphism, such that Es is the space
generated by Z2, E

u, the space generated by Z1, and the center bundle, Ec, is the
space generated by X1, X2, Y1 and Y2.

Note that X1, X2, Y1 and Y2 do not satisfy the Frobenius condition, due to (2.7),
therefore Ec is not integrable, that is, there is no invariant foliation tangent to Ec.

After examining this example, we may ask: is the lack of Frobenius condition
the only reason for non-integrability of the center bundle? What about the case
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of one-dimensional Ec, where the Frobenius condition is always trivially satisfied?
Notice that Ec is a priori only Hölder, so Picard’s Theorem does not necessarily
hold. The question of whether a partially hyperbolic diffeomorphism existed with a
one-dimensional non-integrable center bundle remained open since the 70’s.

Let us define a stronger concept of integrability of the center bundle.

Definition 2.15. A partially hyperbolic diffeomorphism is dynamically coherent if
the following two conditions are satisfied:

(1) There is an invariant foliation tangent to the distribution Ec ⊕ Eu

(2) There is an invariant foliation tangent to the distribution Es ⊕ Ec.

In 2009, Hertz-Hertz-Ures [HHU15b] provided the first example of a partially hy-
perbolic diffeomorphism with a non-integrable one-dimensional center-bundle. It
is a non-dynamically coherent example in a 3-torus. Let us mention that this ex-
ample strongly contrasts with a result by Brin, Burago and Ivanov [BBI09], which
proves that all absolutely partially hyperbolic diffeomorphisms of the 3-torus are dy-
namically coherent. Absolute partial hyperbolicity is more restrictive than partial
hyperbolicity and requires the bound in (1.6) to be uniform, namely: that there exist
λ < 1 < µ such that for all x ∈M and unit vectors vσ ∈ Eσ

x , σ = s, c, u we have

‖Df(x)vs‖ ≤ λ ≤ ‖Df(x)vc‖ ≤ µ ≤ ‖Df(x)vu‖. (2.8)

In [HHU15a] it was shown that if there is an invariant foliation tangent to the
distribution Ec ⊕ Eu, then this foliation cannot contain a compact leaf, that is, a
2-torus tangent to Ec ⊕ Eu (see Theorem 4.4). Note that, in principle, a cu-torus
could coexist with a cu-foliation, but cannot be part of it.

In this example mentioned below, in fact, the distribution Ec ⊕ Eu is uniquely
integrable at every point of T3 minus a 2-torus, which is tangent to Ec ⊕ Eu. This
shows that no invariant foliation exists which is tangent to Ec ⊕ Eu, whence the
example is non-dynamically coherent. We refer the reader to Figure 7 and the caption
below.

We prove the following:

Theorem 2.16. [HHU15b] There exists a partially hyperbolic diffeomorphism f :
T3 → T3 such that

(1) Ec is not integrable
(2) There is no invariant foliation tangent to the distribution Ec ⊕ Eu

(3) There is an invariant 2-dimensional torus T tangent to the distribution Ec⊕
Eu

Moreover, there is a C1-open neighborhood U of f such that all g in U satisfy condi-
tions (1) and (2).
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Again, a 2-dimensional periodic torus appears. How relevant is this object? We
conjecture that these tori might be the only obstruction to dynamical coherence.

Conjecture 2.17 (Dynamical coherence conjecture: Hertz-Hertz-Ures (2009)).
If a partially hyperbolic diffeomorphism of a 3-manifold is not dynamically coherent,
then there is a 2-torus tangent to either Ec ⊕ Eu or Es ⊕ Ec.

Again, if this conjecture were true, the only manifolds supporting non-dynamically
coherent dynamics would be the ones listed in Theorem 2.12. We state this explicitly
as a weaker conjecture:

Conjecture 2.18 (Weak dynamical coherence conjecture: Hertz-Hertz-Ures
(2009)). The only orientable 3-manifolds supporting non-dynamically coherent dy-
namics are:

(1) the 3-torus T3

(2) the mapping torus of −id : T2 → T2

(3) the mapping tori of hyperbolic automorphisms on 2-tori

Conjecture 2.17 was proven true in the 3-torus by Potrie in his PhD. Thesis [Pot12].
This result was extended to manifolds with solvable fundamental group by Hammer-
lindl and Potrie in [HP13]:

Theorem 2.19 (Hammerlindl-Potrie [HP13]). Let f be a partially hyperbolic diffeo-
morphism of a 3-manifold with solvable fundamental group. If f is not dynamically
coherent, then there exists a 2-torus tangent to either Ec ⊕ Eu or Es ⊕ Ec.

Hammerlindl and Potrie hence have proven that if the Weak conjecture 2.18 is
true, then the Strong conjecture 2.17 also holds. After Hammerlindl-Potrie, in or-
der to prove the Conjecture 2.17, it would be enough to show that all partially
hyperbolic diffeomorphisms in 3-manifolds with non-solvable fundamental group are
dynamically coherent.

Hammerlindl-Potrie’s result is the the strongest and most complete one in this
direction up to this date.

In Section 4 we sketch a proof of this fact for the simplest case. See also Hammerlindl-
Potrie’s survey [HP15] for a more complete explanation on this and classification
topics.

2.3. Classification. The third main topic in the study of partially hyperbolic dy-
namics in 3-manifolds is their classification. As early as 2001, Enrique Pujals pro-
posed the following conjecture:

Conjecture 2.20 (Classification conjecture: Pujals (2001), see [BW05a]). If a par-
tially hyperbolic diffeomorphism of a 3-manifold is transitive, then is is (finitely cov-
ered by) one of the following:



PARTIALLY HYPERBOLIC DYNAMICS IN DIMENSION 3 13

(1) a perturbation of the time-one map of an Anosov flow
(2) a skew product
(3) a DA-diffeomorphism

In 2009, Hammerlindl showed in his PhD Thesis [Ham13] that every absolutely
partially hyperbolic diffeomorphism of T3 is leafwise conjugate to its linearization.
Let us define this concept:

Definition 2.21 (Leaf conjugacy). Two dynamically coherent partially hyperbolic
diffeomorphisms f, g : M → M are leafwise conjugate if there exists a homeo-
morphism h : M → M carrying center leaves of f to center leaves of g, that is,
h(W c

f (x)) = W c
g (h(x)), and such that

h(f(W c
f (x))) = g(h(W c

f (x)))

Note that under the hypothesis of Hammerlindl’s Thesis (absolute partial hyper-
bolicity in T3), there is always dynamical coherence, due to a result by Brin, Burago
and Ivanov [BBI09].

Hammerlindl’s Thesis suggested us that perhaps dynamical coherence was a more
suitable hypothesis for a classification of 3-dimensional partially hyperbolic dynam-
ics. This, together with our example [HHU15b], led us to propose the following:

Conjecture 2.22 (Classification conjecture: Hertz-Hertz-Ures (2009)). Let f be
a partially hyperbolic diffeomorphism of a 3-manifold.

If f is dynamically coherent, then it is (finitely covered by) one of the following:

(1) a perturbation of a time-one map of an Anosov flow, in which case it is
leafwise conjugate to an Anosov flow

(2) a skew-product, in which case it is leafwise conjugate to a skew-product with
linear base, or

(3) a DA, in which case it is leafwise conjugate to an Anosov diffeomorphism of
T3.

If f is not dynamically coherent, then there are a finite number of 2-tori tangent
either to Ec ⊕ Eu or to Es ⊕ Ec, and the rest of the dynamics is trivial, as in the
non dynamically coherent example [HHU15b] (see also Section 4)

Both conjectures are true in certain manifolds, as it was proven by Hammerlindl
and Potrie [HP13]:

Theorem 2.23 (Hammerlindl-Potrie [HP13]). Conjecture 2.20 and 2.22 are true for
partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group.

The classification conjectures motivated a lot of work; however, very recently,
Bonatti, Gogolev, Parwani and Potrie found both a dynamically coherent example
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and a transitive example that are not leaf-wise conjugate to any of the above models,
proving both classification conjectures wrong [BPP14, BGP15] (see Section 5).

Question 2.24. Is it possible to classify partially hyperbolic dynamics in 3-manifolds,
modulo leaf conjugacies?

In the next sections we shall develop more deeply the concepts mentioned above.
We tried to make each section as self contained as possible, what may imply that
some definitions be repeated.

3. Ergodicity

To establish the ergodicity of partially hyperbolic maps, the most general method
available is the so called Hopf method. To explain it, we first recall the following.

Theorem 3.1 (Stable Manifold Theorem). Let M be a 3-manifold and let f ∈
Diffr(M) be partially hyperbolic. Then there exist continuous foliationsWs = {W s(x)}x∈M
and Wu = {W u(x)}x∈M tangent to Es and Eu, respectively, called the stable and the
unstable foliations. Their leaves are Cr-immersed lines.

See [HPS77], Theorem 4.1. We point out that, while their leaves are as smooth
as f , the foliations Ws,Wu are seldom differentiable ([Ano67], pag. 201). Their
transverse regularity is only Hölder ([PSW97]) in general.

Using the Birkhoff ergodic theorem, it is not hard to see that a conservative dif-
feomorphism f is ergodic if and only for every continuous observable ϕ : M → R,
the Birkhoff average

ϕ̃(x) = lim
|n|→∞

1

n

n−1∑
k=0

ϕ ◦ fk(x) (3.9)

is almost everywhere constant. But ϕ̃(x) coincides almost everywhere with

ϕ+(x) = lim
n→∞

1

n

n−1∑
k=0

ϕ ◦ fk(x) (3.10)

which is constant on stable manifolds (using uniform continuity of ϕ). Analogously,
ϕ̃(x) coincides almost everywhere with

ϕ−(x) = lim
n→∞

1

n

n−1∑
k=0

ϕ ◦ f−k(x) (3.11)

which is constant on unstable manifolds.
Suppose f is not ergodic. Then there would be a continuous observable ϕ for which

ϕ̃ is not almost everywhere constant, and thus neither are ϕ+ and ϕ−. Hence there
exist two positive measure invariant sets A and B and α ∈ R such that ϕ+(x) ≥ α
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for all x ∈ A, and ϕ−(x) < α for all x ∈ B. Note that A is saturated by stable
manifolds while B is saturated by unstable manifolds.

Assume f is an Anosov diffeomorphism. Let x be a point of A such that almost
all points w ∈ W s(x) satisfy ϕ−(w) = ϕ+(w) = ϕ+(x). Such an x exists because
the stable foliation is absolutely continuous [Ano67] and ϕ+(w) = ϕ−(w) almost
everywhere. Consider y a point belonging to the support of B and V a product
neighborhood containing y. On the one hand, observe that W s(x) intersects V and
let WV be a connected component of W s(x)∩ V . On the other hand, m(V ∩B) > 0
then, the absolute continuity of the stable foliation implies that there is a local stable
manifold T ⊂ V such that mT (T ∩B) > 0 where mT is the Lebesgue measure of T . If
we call hu the unstable holonomy in V sending T to WV thus, mWV

(hu(T ∩B)) > 0.
Since B is u-saturated we have that hu(T ∩B) ⊂ B. We obtain a contradiction with
the fact that almost every point in WV satisfies ϕ−(w) = ϕ+(w). This is basically
the Hopf argument.

In brief, there are two fundamental ingredients in the Hopf argument for an Anosov
map:

(1) there is a way of joining any pairs of points through a curve that is piecewise
either a stable or an unstable leaf

(2) the stable and unstable foliations are absolutely continuous, and completely
transversal.

3.1. Accessibility, a property that implies ergodicity. We would like to apply
the previous method to a general partially hyperbolic system, that is, when there
is some non-trivial center direction. To begin with, observe that in general it is
not true that any two pair of points can be joined by a concatenation of stable and
unstable leaves. For example, if we consider the partially hyperbolic diffeomorphism(

2 1
1 1

)
× id in T2 × S1, then any path consisting of a concatenation of stable

and unstable leaves would be contained in a single 2-torus. We fix f : M → M C2
conservative partially hyperbolic, and call c : [0, 1]→M an su-path if it is piecewise
C1 and for every t where defined, c′(t) ∈ Es ∪ Eu.

Definition 3.2. For a point x ∈M , its accessibility class is the set

AC(x) := {y : ∃c : [0, 1]→M su-path such that c(0) = x, c(1) = y}.
The map f is accessible if the partition by accessibility classes is trivial, and essen-
tially accessible if the partition by accessibility classes is ergodic (i.e. any Borel set
saturated by accessibility classes has either volume 0 or 1).

In the example above, each invariant 2-torus is an accessibility class. When there
is only one accessibility class, we will say that f has the accessibility property. From
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now on, let us suppose this is our case. As for (2), absolute continuity of the strong
foliations is also satisfied ([PS72]), but complete transversality is not (due to the
presence of the center direction)

This problem can be overcome if the holonomies are regular enough. For instance,
Sacksteder used accessibility and Lipschitzness of the stable and unstable holonomies
to prove ergodicity of linear partially hyperbolic automorphisms of nil-manifolds
[Sac70]. More generally, Brin and Pesin proved that accessibility and Lipschitzness
of the stable and unstable foliations imply ergodicity (in fact, Kolmogorov), in the
following way [BP74, Theorem 5.2,p.204], see also [GPS94]: if A and B are defined
as before, consider a density point x in A, and a density point y in B. Take an
su-path joining x and y. Call h a global holonomy map from x to y, that is, h is a
local homeomorphism that takes points in a neighborhood U of x, slides them first
along a stable segment, then along an unstable, then along a stable again, etc. until
reaching a neighborhood V of y, all the su-paths are near the original su-path joining
x and y. Since A is essentially su-saturated, we have that h(A∩U) = A∩V modulo
a zero set. Since h can be chosen to be Lipschitz, there exists a constant C > 1 such
that, for each measurable set E ⊂ U , and for each sufficiently small r > 0, we have

1

C
m(E) < m(h(E)) < Cm(E) (3.12)

B r
C

(y) ⊂ h(Br(x)) ⊂ BCr(y). (3.13)

This implies that

m(BCr(y) ∩ A)

m(BCr(y) \ A)
≥ m(h(Br(x) ∩ A))

m(h(BC2r(x) \ A))
≥ 1

C2.C ′
m(Br(x) ∩ A)

m(Br(x) \ A)
→∞

since m(BC2r(x) \A) ≤ C ′m(Br(x) \A) for some positive constant C ′. From this we
get that y is also a density point of A. This is absurd, since y was a density point of
B, complementary to A modulo a zero set.

This is essentially how the Hopf argument would work in the partially hyperbolic
setting. However, Lipschitzness of the holonomy maps is a very strong hypothesis,
not satisfied for most of the partially hyperbolic diffeomorphisms.

The idea of Grayson, Pugh and Shub [GPS94], later improved by [Wil98], [PS00],
[HHU08b], [BW10] is to show that the stable and unstable holonomies do preserve
density points according to another base different from intervals called Juliennes.
These sets are dynamically defined, and constitute Vitali bases.

Burns and Wilkinson made an improvement of this ergodicity argument in [BW05b].
We will roughly sketch it. Consider for a point x a small center segment, and saturate
by local unstable leaves; to gain better control in the size of these unstable segments
we pre-iterate n times the local unstable manifold of fn(x) (of a convenient size).
The resulting set is then saturated by locally stable manifolds. This small prism is
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called s-julienne, and denoted by Jsucn (x). The subscript n essentially tells the size
of the Julienne, and in particular everything is chosen so that m(Jsucn (x)) −−−→

n 7→∞
0.

An s-julienne density point of a set E is a point x such that:

lim
n→∞

m(Jsucn (x) ∩ E)

m(Jsucn (x))
= 1 (3.14)

The scheme is to consider the sets A and B we considered above, and prove:

(1) the s-julienne density points of A (and of any essentially u-saturated set)
coincide with the Lebesgue density points of A.

(2) the s-julienne density points of A (and of any essentially s-saturated set) are
preserved by stable holonomies.

An analogous statement is proved for A with respect to u-julienne density points,
which are defined with respect to the local basis obtained by locally saturating a
small center segment first in a dynamic way by stable leaves, and then by unstable
leaves. As the stable and unstable holonomies preserve the Lebesgue density points
of A we have that if the diffeomorphism has the accessibility property then A is equal
to M modulo a zero set. This proves the system is ergodic:

Theorem 3.3 ([BW10, HHU08b]). If f ∈ Diff2
m(M3) is partially hyperbolic and

satisfies the accessibility property, then it is ergodic.

In fact, Burns and Wilkinson prove a much more general result:

Theorem 3.4 ([BW10]). If f is a partially hyperbolic diffeomorphism (with any cen-
ter dimension) satisfying the accessibility property and the center bunching property,
then f is ergodic

A diffeomorphism is said to satisfy the center bunching property if

‖Df(x)|Es‖ < m(Df(x)|Ec)

‖Df(x)|Ec‖
≤ ‖Df(x)|Ec‖
m(Df(x)|Ec)

< m(Df(x)|Eu) (3.15)

where m(T ) = ‖T−1‖−1.
Hence Theorem 3.4 implies Theorem 3.3. Also, when the center bundle is one-

dimensional, it is always locally integrable to center curves, so the fake foliations
are not necessary to build local juliennes. Hertz-Hertz-Ures in [HHU08b] show an
alternative way to proving this result in this particular case.

There are two innovations in [BW10]. One is the argument outlined above Theorem
3.3, which uses a much weaker center bunching than in [PS00] paper. This innovation
was already published in [BW05b], and was essential in the proof of Theorem 3.3 in
[HHU08b]. In [BW05b], though, dynamical coherence was still a hypothesis, and the
job in Theorem 3.3 of [HHU08b] consisted in removing this for the center dimension
one case. The second innovation in [BW10] was precisely to remove the dynamical
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coherence hypothesis for any center dimension. This was accomplished by means of
“fake foliations”, which is a very delicate technical tool.

3.2. Properties of Accessibility Classes. We want to precisely describe non-
ergodic partially hyperbolic diffeomorphisms, and it is possible that this only occurs
when there is a compact accessibility class (see Conjecture 2.11); that is, when there
is a torus tangent to Es ⊕Eu (in fact we conjecture that there must be at least two
such tori).

Since accessibility implies ergodicity, in order to describe non-ergodic partially
hyperbolic diffeomorphisms, it seems reasonable to look at the non-accessible ones.
And, even more precisely, we will study the structure of the set of non-open accessi-
bility classes.

Theorem 3.5. [HHU08b] For each x ∈ M3, its accessibility class AC(x) is either
an open set or an immersed surface. Moreover, Γ(f), the set of non-open accessibil-
ity classes of f is a compact codimension-one laminated set whose laminae are the
accessibility classes.

Remark 1. This theorem still holds for partially hyperbolic diffeomorphisms with
center dimension one.

Let us begin by a local description of open accessibility classes.

Proposition 3.6. For any point x ∈M , the following statements are equivalent:

(1) AC(x) is open.
(2) AC(x) has non-empty interior.
(3) AC(x) ∩W c

loc(x) has non-empty interior for any choice of W c
loc(x).

Proof. (2) ⇒ (1) Let y be in the interior of AC(x), and consider any point z in
AC(x). Then there is an su-path from y to z with points y = x0, x1, . . . , xN = z
such that xn and xn+1 are either in the same s-leaf or in the same u-leaf. Let U be
a neighborhood of y contained in AC(x), and suppose that, for instance y = x0 and
x1 belong to the same s-leaf. Then U1 = W s(U) is an open set contained in AC(x),
that contains x1, so x1 is in the interior of AC(x). Indeed, W s is a C0-foliation, so
the s-saturation of an open set is open.

Now, x1 and x2 belong to the same u-leaf. If we consider U2 = W u(U1), then
U2 is an open set contained in AC(x) and containing x2 in its interior. Defining
inductively Un as W s(Un−1) or W u(Un−1) according to whether xn belongs to the
s- or the u-leaf of xn−1, we obtain that all xn belong to the interior of AC(x). In
particular, z. This proves that AC(x) is open.

(1) ⇒ (3) Follows directly from the definition of relative topology.
(3) ⇒ (2) Let V be an open set in AC(x) ∩W c

loc(x), relative to the topology of
W c
loc(x). Then W s(V ) is contained in AC(x), and contains a disc Dsc of dimension
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Figure 3. An su-path from y to z

s+c transverse to Eu. This implies that W u(Dsc) is contained in AC(x) and contains
an open set. Therefore, AC(x) has non-empty interior. �

Let O(f) be the set of open accessibility classes, which is, obviously, an open set.
Then its complement, Γ(f) is a compact set. Let us see that is laminated by the
accessibility classes of its points.

For any point x ∈ M , consider a local center leaf W c
loc(x). Locally saturate it by

stable leaves, that is, take the local stable manifolds of all points y ∈ W c
loc(x), to

obtain a small (s+ c)-disc W sc
loc(x). Now, locally saturate W sc

loc(x) by unstable leaves
to obtain a small neighborhood W usc

loc (x). See Figure 4. On W usc
loc (x), consider the

Figure 4. An open accessibility class

map
pus : W usc

loc (x)→ W c
loc(x) (3.16)

defined in the following way: given y ∈ W usc
loc (x), there exists a unique point pu(y) in

the disc W sc(x) that belongs to the local unstable manifold of y. Since W sc
loc(x) is the

local stable saturation of W c
loc(x), then pu(y) ∈ W sc

loc(x) is in the local stable manifold
of a unique point pus(y) in W c

loc(x). That is, pus(y) is the point obtained by first
projecting along unstable manifolds onto W sc

loc(x), and then projecting along stable
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manifolds onto W c
loc(x). Since the local stable and unstable foliations are continuous,

psu is continuous.

Figure 5. An accessibility class in Γ(f)

Let ACx(y) be the connected component of AC(y)∩W usc
loc (x) that contains y. The

points of ACx(y) are the points that can be accessed by su-paths from y without
getting out from W usc

loc (x), see Figures 4 and 5. Then we have the following local
description of accessibility classes of points in Γ(f):

Lemma 3.7. For any y ∈ W c
loc(x) such that y ∈ Γ(f), we have ACx(y) = p−1su (y)

Proof. Let y be a point in W c
loc(x). Then p−1su (y) = W u

loc(W
s
loc(y)), which is clearly

contained in ACx(y). But also, we have psu(ACx(y)) = y. Indeed, if psu(z) were
different from y, for some z ∈ ACx(y), we would have a situation as described in
Figure 4. For, since psu is continuous, and ACx(y) is connected, psu(ACx(y)) is
connected. If psu(ACx(y)) contained another point, then it would contain a segment,
which has non-empty interior in W c

loc(x). Proposition 3.6 then would imply that
AC(y) is open, which is absurd, since y ∈ Γ(f). This proves that also ACx(y) is
contained in p−1su (y). �

Hence, due to Lemma 3.7 above, we have that, for each x ∈ Γ(f):

ACx(x) = p−1su (x) = W u
loc(W

s
loc(x)) ≈ W u

loc(x)×W s
loc(x).

W s
loc(x) and W u

loc(x) are (evenly sized) embedded segments that vary continuously
with respect to x ∈ M (see Hirsch, Pugh, Shub [HPS77] chapters 4 and 5). This
implies that Γ(f) 3 x 7→ ACx(x) is a continuous map that assigns to each x an
evenly sized 2-disc. To finish the description of accessibility classes, let us introduce
the following definition:

Definition 3.8. The foliations W s and W u are jointly integrable at a point x ∈M
if there exists δ > 0 such that for each z ∈ W s

δ (x) and y ∈ W u
δ (x), we have

W u
loc(z) ∩W s

loc(y) 6= ∅
See Figure 5 for an illustration of a point of joint integrability of W s and W u.
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Then Lemma 3.7 and the discussion above imply the following:

Proposition 3.9. A point x belongs to Γ(f) if and only if W s and W u are jointly
integrable at all points of AC(x).

Indeed, if x belongs to Γ(f), then for all y ∈ AC(x) ⊂ Γ(f), we have psu(ACy(x)) =
{y}. In particular, if z ∈ W u

δ (y) and w ∈ W s
δ (y), then W s

loc(z) ∩W u
loc(w) 6= ∅. On

the other hand, if W s and W u are jointly integrable at all points of AC(x), then
AC(x) is a lamina, due to the explanation above (the coherence of the charts φx
defined above depend only on the joint integrability of W s and W u). Moreover, this
2-dimensional lamina is transverse to W c

loc(x), and so AC(x) ∩ W c
loc(x) cannot be

open. Proposition 3.6 implies AC(x) is not open, so x ∈ Γ(f).
The following lemma shows that, in fact, the laminae of Γ(f), that is, the acces-

sibility classes of points in Γ(f) are C1.

Lemma 3.10. [Did03, Lemma 5] If W s and W u are jointly integrable at x, then the
set

W su
loc(x) = {W u(z) ∩W s(y) : with z ∈ W s

δ (x) and y ∈ W u
δ (x)}

where δ > 0 is as in the definition of joint integrability (Definition 3.8), is a 2-
dimensional C1-disc that is everywhere tangent to Es ⊕ Eu.

In order to prove Lemma 3.10 we shall use the following result by Journé:

Theorem 3.11. [Jou88] Let F h and F v be two transverse foliations with uniformly
smooth leaves on an open set U . If η : U → M is uniformly C1 along F h and F v,
then η is C1 on U .

Proof of Lemma 3.10. Let D be a small, smooth 2-dimensional disc containing x and
transverse to Ec

x. Consider a 1-dimensional smooth foliation of a small neighborhood
N of x, transverse to D. If D is sufficiently small, there is a smooth map π : N → D,
which consists in projecting along this smooth 1-dimensional foliation. Note that
W su
loc(x) can be seen as the graph of a continuous function η : D → N .
We produce a grid on D in the following way: the horizontal lines are the projec-

tions of the stable manifolds W s(y), with y ∈ W u
δ (x), that is, the horizontal lines

are of the form π(W s
loc(η(v))), with v ∈ D. Analogously, the vertical lines are the

projections of the unstable manifolds W u
loc(z), with z ∈ W s

δ (x); that is, the vertical
lines are of the form π(W u

loc(η(w))), with w ∈ D.
Now, v 7→ W s

loc(η(v)) and w 7→ W u
loc(η(w)) are continuous in the C1-topology, that

is, for close v we obtain close W s
loc(η(v)) in the C1-tolopology (Es is a continuous

bundle). Since π is smooth, we also obtain that F h = {π(W s
loc(η(v)))}v∈D, the

horizontal partition of D, and F v = {W u
loc(η(w))}w∈D, the vertical partition of D,

are transverse foliations continuous in the C1-topology.
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But η is uniformly C1 along F h, since η along a leaf F h(v0) = π(W s
loc(η(v0))) is

exactly W s
loc(η(v0)). Indeed, η ◦ π : W su

loc(x) → W su
loc(x) is the identity map, and

W s
loc(η(v0)) is a smooth manifold. Analogously, we obtain that η is uniformly C1

along F v. Hence, by Theorem 3.11 η is C1. �

3.3. Properties of the lamination Γ(f) of non-open accessibility classes.
In order to prove the ergodicity Conjecture 2.11, a possible strategy is to accu-
rately describe the lamination Γ(f). More precisely, one would like to see that
non-accessibility implies the existence of a compact (toral) accessibility class.

However, the state of the art so far is:

Theorem 3.12. ([HHU08a, Theorem 1.6]) Let f : M3 → M3 be a conservative
partially hyperbolic diffeomorphism that is not accessible. Then one of the following
possibilities holds:

(1) there is a compact accessibility class (a torus tangent to Es ⊕ Eu)
(2) there exists an invariant sublamination Λ ⊂ Γ(f) of M that trivially extends

to a (not necessarily invariant) foliation without compact leaves. Moreover,
if Λ 6= M the boundary leaves of Λ are periodic, have Anosov dynamics and
periodic points are dense in each booundary leaf with the intrinsic topology.

(3) Γ(f) is a minimal foliation

With respect to item (2), a leaf L of a lamination Λ is a boundary leaf if there is a
transverse segment to L containing a subsegment α with an endpoint in L and such
that α ∩ Λ = ∅. In [HHU08a] it is proven that boundary leaves are periodic in the
conservative setting, and, moreover, that periodic points are dense in each boundary
leaf with the intrinsic topology.

If Case (1) holds, then Conjecture 2.11 is true. We conjecture that Case (2) is not
possible, more precisely, we conjecture that each boundary leaf should be a torus.
Answering the following question in the affirmative would rule out Case (2):

Question 3.13. Let L be a complete immersed surface in a 3-manifold, such that
there is an Anosov dynamics on L where

(1) each stable and unstable manifold is complete, and angles between stable and
unstable manifolds are bounded;

(2) periodic points are dense with the intrinsic topology; and
(3) the stable and unstable manifold of each periodic point are dense in L with

the intrinsic topology.

Is L the 2-torus?

Case (3) of Theorem 3.12 means that each leaf of Γ(f) is dense. We conjecture
that in this case, in fact, f is essentially accessible, this means that each set which is
union of accessibility classes has either measure one or zero. Essential accessibility in
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Figure 6. Reeb component

dimension 3 implies ergodicity [BW10], [HHU08b]. If this could be established, then
Conjecture 2.11 would be proven true. Finding a counterexample, however, would
be very interesting:

Question 3.14. Is there an example of a partially hyperbolic diffeomorphism in a
3-manifold such that the accessibility classes of f form a minimal foliation, but f is
not essentially accessible?

Since in Case (1) of Theorem 3.12, Conjecture 2.11 follows trivially, we would like
to better describe what happens in Cases (2) and (3). The following describes the
accessibility classes in these cases:

Theorem 3.15. If f has no compact accessibility class, then the π1 of each accessi-
bility class injects in π1(M).

Proof. The result follows almost directly from the following Theorem by Novikov:

Theorem 3.16 (Novikov). Let M be a compact orientable 3-manifold and F a trans-
versely orientable codimension-one foliation without Reeb components. Then, for
each leaf L in F , π1(L) injects in π1(M)

A Reeb component of a foliation is a solid torus subfoliated by planes, as in Figure
6.

Question 3.17. Does Theorem 3.15 hold without assuming there are no compact
accessibility classes?

If Γ(f) = M , then we are already in the hypothesis of Theorem 3.16, since the
fact that Γ(f) has no compact leaves precludes the existence of Reeb components.
The rest of the theorem follows by proving that if Γ(f) 6= M has no compact leaves,
then it can be extended to a foliation without Reeb components. This follows almost
immediately from Theorem 4.1 of [HHU08a]:
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Theorem 3.18 (Hertz-Hertz-Ures). If Λ ⊂ Γ(f) is an orientable and transversely
orientable f -invariant sub-lamination without compact leaves such that Λ 6= M , then
all closed complementary regions of Λ are I-bundles.

By taking finite coverings we may assume that Γ(f) itself is orientable and trans-
versely orientable. Γ(f) 6= M has no compact leaves, therefore its complementary
regions are I-bundles. This allows us to extend Γ(f) to a foliation in a trivial way,
by “copying” the boundary leaves. This means, each complementary region is of the
form L × [0, 1], where L is a boundary leaf of Γ(f), we foliate each complementary
region, by considering leaves of the form L× {t}, with t ∈ [0, 1]. �

4. Dynamical Coherence

It turns out that ergodicity in our setting is tightly related to integrability of the
invariant bundles. As we explained before the bundles Es, Eu are always integrable.
The integrability of the center bundle Ec, on the other hand, cannot be always
guaranteed even in our setting. This was a long standing problem and was recently
solved in [HHU15b], see Theorem 2.16, rewritten below.

Let us recall dynamical coherence, which was stated in Definition 2.15. A partially
hyperbolic diffeomorphism is dynamically coherent if there is an f -invariant foliation
tangent to Es⊕Ec (the center-stable foliation), and an f -invariant foliation tangent to
Ec⊕Eu (the center-unstable foliation). Note that in this case the center bundle is also
integrable: an f -invariant foliation tangent to Ec is obtained by simply intersecting
the center stable and center unstable leaves, and taking connected components. This
is called the center foliation.

Proposition 4.1. If f : M3 → M3 is a partially hyperbolic diffeomorphism whose
center bundle is C1, then f is dynamically coherent.

Proof. Observe first that Wc is f -invariant: if c : [0, 1] → W c(x) is a differentiable
curve with c(0) = x, then f◦c : [0, 1]→M is a differentiable curve tangent to Ec, and
hence by uniquenes of solutions of differential equations, f ◦c([0, 1]) ⊂ W c(f ◦c(0)) =
W c(f(x)).

Theorem 6.1 and Theorem 7.6 in [HPS77] imply that through each leaf L of Wc

there exist immersed submanifolds W s(L),W u(L) tangent to Ecs, Ecu respectively,
saturated by the corresponding strong foliations. Again using uniquenes of solutions
of differential equations, one proves that the families Wcs = {W s(L)}L∈Wc , Wcu =
{W u(L)}L∈Wc are pairwise disjoint, and since their tangent spaces vary continuously,
they form foliations. Invariance follows since Wc,Ws,Wu are invariant. �

More details about this can be found in [BW08]. When the center bundle is not
differentiable, we still have curves tangent to it as a consequence of Peano’s Theorem.



PARTIALLY HYPERBOLIC DYNAMICS IN DIMENSION 3 25

This family of curves, however, is not assembled as a foliation, but it still can contain
relevant information. See [HHU15a] and [HHU08c].

Problem 4.2. Find an example of a dynamically coherent partially hyperbolic dif-
feomorphism that is not leafwise conjugate to a C1 dynamically coherent one. Can
[BPP14] examples be adjusted to get one?

Other condition that guarantees dynamical coherence in T3 is absolute partial
hyperbolicity, a notion stronger than partial hyperbolicity, which was described in
Equation (2.8):

Theorem 4.3 (Brin-Burago-Ivanov -[BBI09]). If f : T3 → T3 is absolutely partially
hyperbolic, then f is dynamically coherent.

However, this is not the general case, as we explain in the next subsection.

4.1. A non-dynamical coherent example.

Theorem 2.13. [HHU15b] There exists a partially hyperbolic diffeomorphism f :
T3 → T3 such that

(1) there is no invariant foliation tangent to the distribution Ec ⊕ Eu; and
(2) there is an invariant 2-dimensional torus T tangent to the distribution Ec ⊕

Eu.

Moreover, there is a C1-open neighborhood U of f in Diff1(M) such that all g in U
satisfy conditions (1) and (2).

Sketch. Let A : T2 → T2 be a hyperbolic linear map with eigenvalues λ < 1 < 1/λ.
Take u a unit eigenvector corresponding to the eigenvalue λ. Consider also a north
pole-south pole function f : T→ T such that

f(0) = 0, f(1/2) = 1/2

f ′(1/2) = σ < λ < 1 < ν = f ′(0) < 1/λ

and a differentiable function φ : T→ R.
Now construct a perturbation F of the Axiom-A map A× f by “pushing” in the

stable direction of A, namely

F (x, θ) = (Ax, f(θ)) + (φ(θ)es, 0), φ(1/2) = 0.

where es is a unit vector in the Es direction of A.
Note the strong unstable direction of A× f is unaltered by this perturbation, and

in particular the strong stable manifold of the perturbation exists and coincides with
the strong stable manifold of the unperturbed map. Observe that the unperturbed
map is not partially hyperbolic. Now we study the other invariant directions.
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We are seeking invariant directions of the derivative of F :

dF(x,θ)(v, t) = (Av, f ′(θ)t) + (φ′(θ)tes, 0)

An invariant direction (inside the es×T cylinder) will be generated by a vector field
of the form (a(θ)es, 1) for some function a, and hence we need to solve

a(f(θ))f ′(θ) = λa(θ) + φ′(θ). (4.17)

We are thus led to find a solution of the cohomological equation

b ◦ f = λb+ φ

(the solution of (4.17) is just a = b′). One then checks that the following two
functions are solutions,

η(θ) =
1

λ

∞∑
1

λnφ(f−nθ) (4.18)

ζ(θ) = −1

λ

∞∑
0

λ−nφ(fnθ) (4.19)

and that the previous assumptions imply that η ∈ C1(T \ {1/2}), ζ ∈ C1(T \ {0}).
Let us define

Ec(θ) = span(η′(θ)es, 1) for θ 6= 1
2

and
Es(θ) = span(ζ ′(θ)es, 1) for θ 6= 0

Back to the invariant directions, note that, for generic φ, η′(θ) gets bigger as θ
approaches 1/2, and thus if we can choose φ so that

lim
θ→1/2

η′(θ) =∞ (4.20)

we will get continuity for Ec by defining

Ec(θ = 1
2
) = span{(es, 0)} = Es

A × 0.

Arguing similarly, we define

Es(θ = 0) = Es
A × 0,

and we will get a continuous bundle provided that we prove

lim
θ→0

ζ ′(θ) =∞. (4.21)

Assume for now that we have proved that these bundles are continuous. Now we
want to show that TT3 = Es⊕Ec⊕Eu, or what is equivalent, that the angle between
Es and Ec is not zero. What we need to show is that η′ 6= ζ ′ for θ 6= 0, 1/2. Note
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that for θ = 0, 1/2, the angle is not zero, and hence it is not zero in a neighbourhood
of these points. But by the cohomological equations,

(η′ − ζ ′) ◦ f = λ(η′ − ζ ′)
and using the form of the dynamics of f , we conclude that the sign of η′−ζ ′ is constant
in (0, 1/2) and (1/2, 1), and clearly non zero. The following lemma is proven in detail
in [HHU15b].

Lemma 4.3. There exists φ : T→ R such that:

(1) the limits in (4.20) and (4.21) hold.
(2) η′ has opposite sign in (0, 1/2) and (1/2, 1).

In particular F is partially hyperbolic (but NOT absolutely partially hyperbolic).
Finally we prove that it is not dynamically coherent. Observe that since the bundles
only depend on θ we obtain the stable, unstable and center manifolds (provided that
this last one exists) by translation.

Consider the function h : T 3 → T 2 given by

h(x, θ) = x− η(θ)es.

Then F ◦ h = h ◦AT and h is clearly surjective, hence it is a semiconjugacy. Note
that we have a parametrization lx(θ) of h−1(h(x, 0)) given by

lx(θ) = (x, 0) + (η(θ)es, θ),

and hence, the family of curves {lx(θ)} is tangent to Ec if θ 6= 1/2. For θ 6= 1/2 the
bundle Ec is uniquely integrable and hence its invariant curves are precisely the lx(θ).
But for θ = 1/2 Ec = Es

A×{0}, hence its tangent curves have to be horizontal. Now
we use that η′ have different signs on the intervals (0, 1/2) and (1/2, 1) to conclude
that this family is not a foliation near θ = 1/2, hence the bundle Ec is not integrable.
See Figure 7.

�

The example previously constructed in fact is robust, meaning that in a neighbor-
hood of it there are no dynamically coherent partially hyperbolic diffeomorphisms,
a surprising fact. This is a consequence of the fact that the invariant torus corre-
sponding to θ = 1/2 is a cu-torus, and in particular is a normally hyperbolic torus.
The results of [HPS77] imply that this torus persists under perturbations, meaning
that any small perturbation of f has a cu torus. On the other hand, outside a neigh-
borhood of this cu-torus, there is a unique center foliation, which is persistent under
perturbations, due also to [HPS77]. This foliation is extended by invariance to all
the complement of the cu-torus. Hence, if there were a foliation, it would contain a
cu-torus. This is not possible, due to the following result:
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Figure 7. The figure above shows a center-stable leaf. The center
leaves are unique for θ 6= 1/2, and get tangent to the center leaf at
θ = 1/2, making a peak. This precludes the existence of a center
foliation.

Theorem 4.4 (Hertz-Hertz-Ures). [HHU15b] Let f : M3 → M3 be a dynamically
coherent partially hyperbolic diffeomorphism. Then the center unstable foliation does
not have any closed leaf.

Question: Does the same result hold in any dimension?

4.2. Non-dynamical coherence conjecture - state of the art. It has been
proven by A. Hammerlindl and R. Potrie [HP13] that the dynamical coherence Con-
jecture 2.17 is true in tori and solv- and nil-manifolds and their finite covers:

Theorem 4.5 (Hammerlindl-Potrie [HP13] ). If f is a non-dynamical coherent dif-
feomorphism in a 3-manifold with (virtually) solvable fundamental group, then there
exists a 2-torus, tangent either to Es ⊕ Ec or Ec ⊕ Eu. In particular, any par-
tially hyperbolic diffeomorphism with Ω(f) = M in these manifolds is dynamically
coherent.

This is the sharpest result concerning Conjecture 2.17 so far. Let us give a brief
sketch of the ideas used to establish this theorem in the simpler case where M = T3.
This result has been proven by R. Potrie in his thesis (see [Pot12]), and we shall
follow his arguments. Consider f : T3 → T3 partially hyperbolic, and by passing to
a finite covering, it is no loss of generality to assume that the bundles Eσ

f are oriented
and, furthermore, that f preserves their orientation.

We will rely heavily in the seminal papers of Brin, Burago and Ivanov ([BI08,
BBI04, BBI09]). The starting point is that the action in homology f∗ : H1(T3) →
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H1(T3) is partially hyperbolic [BI08, Theorem 1.2.]. Namely, if A = f∗ ∈ SL(3,R)
has eigenvalues λ1, λ2, λ3 then |λ1| < 1 < |λ3|. We have two cases:

(1) |λ2| = 1; this is the skew-product case.
(2) |λ2| 6= 1; in this case f is a DA.

It suffices to show the existence of an f -invariant foliation tangent to Ecs (the
other case being analogous). It turns out that there is a natural candidate for F cs.

Theorem 4.6 ([BI08], Thm. 4.1). There exists a family Bcs = {Bcs(x)}x∈M such
that

(1) Each Bcs(x) is an immersed boundary-less surface of class C1 tangent to Ecs

(2) For every x, x′ ∈M , x 6= x′ the surfaces Bcs(x), Bcs(x′) do not cross topolog-
ically; that is, Bcs(x′) cannot intersect two different connected components of
B \Bcs(x), for any neighborhood B of x.

(3) Bcs is f -invariant.

The family Bcs is what is called a branched foliation, and its elements are called
leaves. To prove that Bcs is a genuine foliation it suffices to show that it is unbranched :
namely, that any x ∈M is contained in exactly one leaf of Bcs. This fact is a direct
consequence of Proposition 1.6 of [BW05a] and the remark afterwards.

Another important fact is that Ecs is almost integrable, that is, there exist a fo-
liation (not necessarily invariant) that is transverse to Eu. This concept of almost
integrability has been coined by R. Potrie and has proven useful in this context.
Almost integrability of Ecs for all 3D partially hyperbolic diffeomorphisms with ori-
entable bundles had been established by Burago-Ivanov:

Theorem 4.7 ([BI08], Key Lemma). For every ε > 0 sufficiently small there exists
a true (not necessarily invariant) foliation T csε such that the angle ∠(TT csε , Ecs) is
less than ε. Moreover, there exists a continuous surjective map hcsε : M →M that is
ε-close to the identity and sends the leaves of T csε into leaves of Bcs.

Potrie then shows that for sufficiently small ε, the lifted foliations F̃u, T̃ csε to R3

have global product structure (that is, any two leaves F ∈ F̃u and T ∈ T̃ csε ) intersect
exactly in one point). This has the following consequence

Theorem 4.8 ([Pot12] Prop. 8.4). Bcs is unbranched.

The proof of this theorem relies on two geometric facts:

Fact 1: F̃u is quasi-isometric: that is, there exist a, b > 0 such that for every

x, y ∈ R3, y ∈ F̃u(x) the length l(x, y) of the interval with endpoints x, y contained

in F̃u(x) satisfies

l(x, y) ≤ a|x− y|+ b.
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Fact 2: There exists an A-invariant plane P and R > 0 such that every leaf of
Bcs is contained in an R-neighborhood of a plane parallel to P , and either

(1) the projection of P in T3 is dense, and the R-neighborhood of every leaf of
Bcs contains a plane parallel to P , or

(2) the projection of P in T3 is a 2-torus: in this case there exists a 2-torus
tangent to Es ⊕ Ec

Note that if f is a DA only (1) above can hold. Let us see how the proof goes:

Proof. A modification of Proposition 3.7 in [BBI04] gives that a codimension one
foliation in T3 either has a Reeb component, or there exists R > 0 and an A-invariant
plane P ⊂ R3 such that every leaf of the lifted foliation is in a R-neighborhood of
P . The projection of a plane in T3 is either dense or a 2-torus: in the former case
every leaf of the lifted foliation is parallel to a fixed translate of the plane, while in
the later case there is a leaf of the foliation in T3 which is a torus (see Theorem 5.3
and Proposition 5.6 in [Pot12]).

As T csε is transverse to Wu, it cannot have a Reeb component and thus we can

consider the plane P as above. Note that by 4.7 the leaves of B̃cs are ε-close to the

leaves of T̃ csε , hence the first part of the claim follows.
Now, it suffices to observe that if T csε has a torus leaf; by Theorem 4.7 Bcs also

has a torus leaf, therefore, there is a 2-torus tangent to Es ⊕ Ec. �

Once the above facts are established, the proof of the theorem is carried by stan-
dard arguments. To finish the proof of the conjecture, one has to analyze the skew-
product and the DA case separately. In both cases, with the machinery developed,
it is not too hard to check that the absence of tori tangent to Es ⊕ Ec implies the
global product structure referred above, thus implying dynamical coherence.

When the manifold M is a solv-manifold, but not a nilmanifold, the proof of
Theorem 4.5 becomes technically harder, although some of the guidelines presented
are still valid. It relies on more background on foliation theory (codimension-one
foliations of compact solv-manifolds are reasonably well understood). Solv-manifolds
of this type are covered by torus bundles over the circle (a reasonable geometric
object), and then there is a canonical model (isotopic to the identity) to compare
the dynamics. For more details an a complete proof, we refer the reader to [HP13].

We also recommend the excellent survey by Hammerlindl and Potrie [HP15].

5. Classification

For many years, the only known examples of partially hyperbolic diffeomorphisms
in 3-manifolds were the ones listed in Subsection 1.1, namely: time-one maps of
Anosov flows, skew products, DA-diffeomorphisms, and their perturbations. As it
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was stated in Subsection 2.3, this led E. Pujals, in 2001 to conjecture that for tran-
sitive ones, this was the complete list of partially hyperbolic diffeomorphisms:

Conjecture 2.20 (Pujals (2001)). Any transitive partially hyperbolic diffeomorphism
in a 3-manifold is finitely covered by a map which is conjugated either to

(1) A perturbation of the time-one map of an Anosov flow.
(2) A perturbation of an Skew Product.
(3) A DA.

Two different particular cases of this conjecture were verified in the transitive
setting by C. Bonatti and A. Wilkinson [BW05a].

Theorem 5.1 (Bonatti-Wilkinson). Let f : M →M be a transitive partially hyper-
bolic diffeomorphism.

(1) Assume that there exists some embedded circle c such that1 f(c) = c, with the
property that for some ε > o the set⋃

x∈c

W s
ε (x) ∩

⋃
y∈c

W u
ε (y) \ c

contains a connected component that is a circle. Then f is dynamically co-
herent and finitely covered by a map which is conjugated to a circle extension
of an Anosov map (a topological Skew Product).

(2) Assume that f is dynamically coherent, and that for some ε > 0 each end of
a center leaf contained in ⋃

x∈c

W s
ε (x)

is periodic. Then, the center foliation is fixed under fn and it supports a
continuous flow conjugate to an expansive transitive flow.

It would be interesting to know if in case (2) one in fact can take an Anosov flow,
and thus settle Pujals’s conjecture for that case. This still remains an open problem.

More recently, a new type of non-dynamically coherent example was presented, the
one described in Subsection 4.1. The examples in Subsection 4.1 suggested another
possibility:

Conjecture 2.22 (Classification conjecture: Hertz-Hertz-Ures (2009)). Let f be
a partially hyperbolic diffeomorphism of a 3-manifold.

If f is dynamically coherent, then it is (finitely covered by) one of the following:

1Interestingly enough, the proof does not extend to the case where c is merely periodic.
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(1) a perturbation of a time-one map of an Anosov flow, in which case it is
leafwise conjugate to an Anosov flow;

(2) a skew-product, in which case it is leafwise conjugate to a skew-product with
linear base; or

(3) a DA, in which case it is leafwise conjugate to an Anosov diffeomorphism of
T3.

If f is not dynamically coherent, then there are a finite number of 2-tori tangent
either to Ec ⊕ Eu or to Es ⊕ Ec, and the rest of the dynamics are trivial, as in the
non dynamically coherent example [HHU15b].

Both Conjectures have been proven false very recently by Bonatti, Gogolev, Par-
wani and Potrie, see [BPP14, BGP15] and Subsection 5.1 for a descrption of these
examples. However, both conjectures are true in certain manifolds, as it was proven
by Hammerlindl and Potrie:

Theorem 5.2 (Hammerlindl-Potrie [HP13]). Both Conjecture 2.20 and Conjecture
2.22 are true on 3-manifolds with (virtually) solvable fundamental group.

Theorem 5.2 was first proved in tori by Hammerlindl in his thesis [Ham13], it was
later extended to 3-manifolds with (virtualy) nilpotent groups by Hammerlindl and
Potrie in [HP14]. Finally, it was extended to 3-manifolds with (virtually) solvable
groups, by the same authors in [HP13], still in press.

In [HP13] it is proven that, for solvmanifolds, as stated in Conjecture 2.17, the
absence of tori tangent to either Es ⊕ Ec or Ec ⊕ Eu implies dynamical coherence.
Observe that the existence of such a torus implies the existence of either a repelling
or an attracting periodic torus (see more details in Section 6). Transitivity precludes
this possibility. Therefore, for solvmanifolds, we can assume there is dynamical
coherence in both Conjectures 2.20 and 2.22.

Let us give a flavor of how Theorem 5.2 is proved in the case of solvmanifolds with
non-virtually nilpotent fundamental group.

Theorem 5.3 ([HP13]). If f : M →M is a dynamically coherent partially hyperbolic
diffeomorphism on a solvmanifold whose fundamental group is not virtually nilpotent,
then a finite cover of a finite iterate of f is leafwise conjugate to the time-one map
of a suspension Anosov flow.

See Definition 2.21 for the definition of leaf conjugacy.
To start the proof of Theorem 5.3, one shows that any such manifold is finitely

covered by the mapping torus MA of a hyperbolic automorphism on T2, that is
MA = T2×R/ ∼ such that (Ax, t) ∼ (x, t+1), where A is a hyperbolic automorphism
of T2. And any diffeomorphism of MA has a finite iterate that is homotopic to the
identity. This is not hard to prove.
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Now, on the universal cover of MA, there are model foliations Acs and Acu: (v1, t1)
and (v2, t2) belong to the same leaf of the foliation Acs if and only if v1− v2 is in the
stable eigenspace of the automorphism A. Similarly, (v1, t1) and (v2, t2) belong to
the same leaf of the foliation Acu if and only if v1 − v2 is in the unstable eigenspace
of the automorphism A. In [HP13] it is seen that the lift to the universal cover of
any foliation without compact leaves is almost parallel to either Acs or Acu. Two
foliations F and F ′ are almost parallel if there is a uniform bound R > 0 such that

(1) for each leaf L ∈ F there is a leaf L′ ∈ F ′ such that dH(L,L′) < R, and
(2) for each leaf L′ ∈ F ′ there is a leaf L ∈ F such that dH(L,L′) < R,

where dH is the Hausdorff distance, that is

dH(L,L′) = max

{
sup
x∈L

d(x, L′), sup
y∈L′

d(y, L)

}
.

Now, neither F cs nor F cu contain compact leaves [HHU15a], and therefore each one
is almost parallel to either Acs or Acu. They proceed then to show that if F cs is
almost parallel to Acs, then F cu is almost parallel to Acu. This step is more delicate.

Note that the center leaves of the model foliation - that is, the leaves in Ac that
are intersection of leaves Asc and Acu - correspond to trajectories of an Anosov flow,
which is infinitely expansive. Infinite expansivity means that for any two different
points x and y in the universal cover and any K > 0, there will be a time t ∈ R such
that Xt(x) and Xt(y) are K-apart. Therefore, any two such leaves Ac1 and Ac2 are
at infinite Hausdorff distance. This implies that the almost-parallel relation defined
above assigns to each center leaf F c in the intersection of F sc and F cu a unique center
leaf in Ac. Less trivially, there is a unique leaf in F sc at finite Hausdorff distance
of each leaf in Asc, and a unique leaf in F cu at finite distance of each leaf in Acu
(Lemma 5.3 of [HP13]). Therefore, any two center leaves F c

1 and F c
2 that are at finite

Hausdorff distance of each other, must be in the intersection of a single leaf of F sc
and a single leaf of F cu.

Now, let us assume that the center bundle Ec
f is orientable, for otherwise we can

take a finite cover. Then there exists a field Xc tangent to Ec, defining a flow ϕ on
MA. We claim that ϕ is an expansive flow.

Indeed, any two ϕ-trajectories that at most ε-apart correspond to two center leaves
that are at finite Hausdorff distance; hence, they are in the intersection of a single
leaf of F sc and a single leaf of F cu. This implies either that a stable leaf intersects
(at least) twice a center unstable leaf of F cu or that an unstable leaf intersects (at
least) twice a center stable leaf of F sc. A classical argument à la Novikov, implies
the existence of a compact leaf either in F cu or in F sc, a situation precluded by
[HHU15a].
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Finally, M. Brunella establishes in [Bru93] that any expansive flow on a torus
bundle is leafwise conjugate to a transitive Anosov suspension, concluding the clas-
sification theorem in solvmanifolds.

Again, we refer the reader to the survey of Hammerlindl and Potrie, in order to
deepen in this topic.

5.1. Anomalous partially hyperbolic diffeomorphisms. Very recently, C. Bon-
atti, A. Gogolev, K. Parwani and R. Potrie found both a dynamically coherent ex-
ample and a transitive example that are not leaf-wise conjugate to any of the above
models, proving both conjectures wrong [BPP14, BGP15].

The idea behind both constructions is to perform a large “perturbation” by com-
posing the time one map of certain Anosov flows in an appropriate neighborhood
with a map of the form (g,Dg), where g is a Dehn twist and Dg is the derivative
acting on the unitary tangent bundle. This neighborhood has to be large enough in
order to obtain that the effect of the derivative of the Dehn twist be negligible. We
will explain this with some more detail for the case of the perturbations of the time-
one map of the geodesic flow of surfaces of constant negative curvature in Theorem
5.5.

The first family of (non-transitive) examples is obtained by modifying the Franks-
Williams’ construction [FW80b] of a non-transitive Anosov flow.

Theorem 5.4 (Bonatti, Parwani, Potrie, [BPP14]). There is a closed orientable 3-
manifold M endowed with a non-transitive Anosov flow Xt and a diffeomorphism
f : M →M such that:

• f is absolutely partially hyperbolic,
• f is robustly dynamically coherent,
• the restriction of f to its chain recurrent set coincides with the time-one map

of the Anosov flow Xt, and
• for any n > 0, fn is not isotopic to the identity.

The transitive examples are built on time-one maps of two different Anosov flows:
the Bonatti-Langevin example [BL94] and the geodesic flow of surfaces of negative
constant curvature (a similar construction works for the Handel-Thurston Anosov
flow [HT80]). After the statement of the theorem we will give a brief outline of the
construction for the case of geodesic flows.

Theorem 5.5 (Bonatti, Gogolev, Potrie, [BGP15]). There exist a closed orientable
3-manifold M and an absolutely partially hyperbolic diffeomorphism f : M → M
that satisfy the following properties

• M admits an Anosov flow;
• fn is not homotopic to the identity map for all n > 0;
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• f is volume preserving; and
• f is robustly transitive and stably ergodic.

Unit tangent bundle of surfaces of negative curvature: Here we give the main
ideas of the construction of the examples for this case. Let S be a surface and g a
Riemannian metric of curvature −1. Fix a simple closed geodesic γ. It is possible to
deform the hyperbolic metric in such a way the length of γ goes to 0. Indeed, there
is a sequence gn of metrics of curvature −1 such that lengthgnγ → 0. Then there
are collars of uniform length (for the metric gn) of γ; call them Cn. These collars
become thinner and thinner as n goes to infinity. This implies that Dehn twists ρn
on these collars are very close to isometries, for n large enough.

Now consider hn = Dρn◦ϕn where ϕn is the time-one map of the geodesic flow of gn
and Dρn is the projectivization of the derivative of ρ. Since the partially hyperbolic
structure does not change with the metric (indeed the partially hyperbolic structure
depends on the metric, and for all n the metric on the universal cover is the same)
this will imply that hn is partially hyperbolic for n large enough. By constructing ρn
with some care, Dρn can be made volume preserving. Known results and techniques
imply that there is a stably ergodic and robustly transitive perturbation of hn.

Bonatti, Hammerlindl, Gogolev and Potrie have announced a generalization of the
latter construction, see [BGP15]. There is a natural homomorphism of the mapping
class group of a surface of genus greater than one, S, into the mapping class group
of its unit tangent bundle given by the projectivization, I : MCG(S)→ MCG(T1S).

Theorem 5.6. Each mapping class of the image of I admits a volume preserving
partially hyperbolic representative.

There are some open questions about the examples given by Theorem 5.5. The
most important is if they are dynamically coherent.

Regarding the classification many new questions arise. Some of them are the
following.

Question 5.7. Suppose the fundamental group of M is not (virtually) solvable. If
M admits a partially hyperbolic diffeomorphism, does it support an Anosov flow?

Hammerlindl, Potrie and Shannon have announced that the answer is positive for
Seifert manifolds having fundamental group with exponential growth.

Question 5.8. Given a partially hyperbolic diffeomorphism on M , is there some
sort of inverse process of the previous construction leading to a partially hyperbolic
diffeomorphism isotopic to the identity? To a partially hyperbolic diffeomorphism leaf
conjugate (up to finite cover and iterate) to the time one map of an Anosov flow?
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6. A tool to better understand some partially hyperbolic dynamics:
Anosov Tori

Both the ergodicity and the integrability conjectures propose that the existence
of a map with some specific dynamical property leads to very rigid restrictions in
the topology of the ambient manifold. The reader may wonder why this is case, and
how one can attempt to prove such type of results. We discuss these issues in this
section.

The unifying link is, surprisingly, the existence of certain tori embedded in the
manifold.

Definition 6.1. We say that the manifold M admits an Anosov torus if there exist
a C1-embedded torus T ⊂M and a diffeomorphism φ : M →M such that

(1) φ(T ) = T .
(2) φ|T is a linear hyperbolic automorphism2.

As we shall see below, not every manifold admits an Anosov torus.

Recall that a three manifold is irreducible if every embedded two-sphere bounds a
three-ball. We then have the following topological result:

Theorem 6.2 (Hertz-Hertz-Ures [HHU11]). Assume that M is a compact, irre-
ducible 3-manifold supporting an Anosov torus. Then M is homeomorphic to either:

(1) a 3-torus,
(2) the mapping torus of −Id : T2 → T2, or
(3) the mapping torus of an hyperbolic automorphism of T2.

We remark that partial hyperbolicity is not required in Theorem 6.2. This theorem
just shows that the 3-manifolds admitting Anosov tori are actually very few. Now we
apply this result to the partially hyperbolic context. We first note that irreducibility
comes for free in this setting.

Lemma 6.3. If a 3-manifold M supports a partially hyperbolic diffeomorphism, then
M is irreducible.

Proof. A 3-manifold admitting a partially hyperbolic diffeomorphism has a codimension-
one foliation having neither Reeb components nor spherical leaves [BBI04]. This
proves the claim, since Rosenberg shows in [Ros68] that any codimension-one folia-
tion in a reducible 3-manifold must have a Reeb component or a spherical leaf. See
also [Rou71]. �

2This is equivalent to the existence of φ such that φ|T be isotopic to an Anosov diffeomorphism,
which holds if and only if the action on the first homology group of the torus H1(T ) is hyperbolic.
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The following proposition describes Anosov tori that arise naturally in partially
hyperbolic dynamics, see [HHU15a] for more details.

Proposition 6.4. Let f : M → M be a partially hyperbolic diffeomorphism, and
assume that there exists an f -invariant embedded torus T tangent to either Ec⊕Eu,
Es ⊕ Ec or Eu ⊕ Es. Then T is an Anosov torus.

Proof. Let g = f |T . In each of the different cases, g or g−1 preserves an expanding
foliation by lines, so with no loss of generality we will assume that ‖dg|Eu‖ > 1. It
suffices to prove that g∗ : π1(T ) ≈ Z2 → Z2 is hyperbolic.

By taking g2 if necessary we can suppose that g preserves the orientation of Eu|T .
Since g preserves a foliation without compact leaves, the integral matrix g∗ has an
eigenspace of irrational slope. This implies that either g∗ is hyperbolic or g∗ = Id. In
the second case g has a lift ĝ : R2 → R2 such that ĝ = Id+ α where α is a periodic,
and in particular bounded, function. Hence there exists a constant K > 0 such that
given any X ⊂ R2,

diam(ĝn(X)) ≤ diam(X) + nK.

Let γ be an arc contained in a leaf of W u(x), x ∈ T . Then the length of γ
grows exponentially under ĝn and its diameter grows at most linearly. This implies
that given a small ε > 0 there exists an iterate of g that contains a curve of length
arbitrarily large and with end points at distance less than ε. Using Poincaré-Bendixon
we obtain a singularity of the foliation W u. This is a contradiction; thus g∗ is
hyperbolic.

�

Definition 6.5. Let f : M → M be a partially hyperbolic diffeomorphism. An
embedded torus tangent to either Ecs, Ecu or Esu will be called a cs, cu or su-torus
respectively. In these cases, we say that f admits the corresponding torus.

Lemma 6.6. If f admits an su-torus, then M admits an Anosov torus

Proof. Assume f admits an su-torus, and consider the lamination Λ of all su-tori of
f . This is a compact lamination [Hae62]. Therefore, there is a recurrent leaf., that
is, there is a torus T and an iterate n, such that dH(fn(T ), T ) < ε for small ε. There
exists a diffeotopy it on M , taking fn(T ) into T . Then φ = fn ◦ i1 fixes T and φ|T
is isotopic to an Anosov diffeomorphism. �

Lemma 6.7. If f admits an sc or cu torus, then it admits an f -periodic sc or cu
torus. Therefore, M admits an Anosov torus (by Proposition 6.4)

Proof. Let T be a cu-torus, and consider the sequence f−n(T ). Since the family of
all compact subsets of M considered with the Hausdorff metric dH is compact, there
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is a subsequence f−nk(T ) converging to a compact set K ⊂ M . Therefore, for each
ε > 0 there are arbitrarily large N >> L > 0 such that dH(f−N(T ), f−L(T )) < ε.

Since T is transverse to the stable foliation, the union of all local stable leaves
of T forms a small tubular neighborhood of T , U(T ). Since stable leaves grow

exponentially under f−1, if N >> L as above are large enough, then f−L(U(T )) ⊂
f−N(U(T )). This implies that fN−L(U(T )) ⊂ U(T ).

Exercise 6.8. Finish the proof by showing that ∩∞k=0f
k(N−L)(U(T )) is a periodic

cu-torus.

�

Corollary 6.9. Suppose that f : M → M is a partially hyperbolic diffeomorphism
admitting an sc, cu or su torus. If M is connected, then M is homeomorphic to
either

(1) A 3-torus.
(2) The mapping torus of −Id : T2 → T2.
(3) The mapping torus of an hyperbolic automorphism of T2.

Observe that an sc or cu torus cannot appear on the conservative setting. Indeed,
by Lemma 6.7 above it would imply the existence of a periodic sc or cu torus. This
2-torus is, respectively, repelling or attracting, a situation that cannot occur in a
conservative setting.

In the following subsection we sketch the proof of Theorem 6.2. We refer the reader
to [HHU11] for the complete proof.

6.1. Manifolds admitting Anosov tori. The first step in the proof of Theorem
6.2 is to show that Anosov tori are incompressible.

Definition 6.10. An embedded orientable surface S ⊂ M is incompressible if the
homomorphism induced by the inclusion map i∗ : π1(S)→ π1(M) is injective.

Equivalently, S is incompressible if every embedded disk D2 ⊂M such that D2 ∩
S = ∂D2, is contractible in S (see for instance [Hat07], page 10). We have

Theorem 6.11 (Hertz-Hertz-Ures [HHU08a]). Anosov tori are incompressible.

Now, let us assume, as in the hypotheses of Theorem 6.2, that the irreducible
3-manifold M admits an Anosov torus T . Since T is incompressible, we can “cut”
M along T and obtain a manifold N having incompressible 2-tori as boundary com-
ponents. Theorem 6.2 then follows from the following theorem:
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Theorem 6.12 (Hertz-Hertz-Ures [HHU11]). Let N be a compact orientable irre-
ducible 3-manifold with nonempty boundary such that all the boundary components
are incompressible 2-tori. If N admits an Anosov torus, then N ≈ T2 × [0, 1].

In order to prove this, we make use of the Jaco-Shalen-Johannson decomposition,
or JSJ-decomposition, which states that any manifold satisfying the hypotheses of
Theorem 6.12 can be cut by a (unique) family of incompressible tori, so that the
remaining pieces have certain characteristics: they are either Seifert or else atoroidal
and acylindrical. We provide these definitions below. See also Theorem 6.15.

The proof of Theorem 6.12 consists in showing, on one hand, that any Seifert
manifold having incompressible tori as boundary components is T2 × [0, 1], and,
on the other hand, that any manifold satisfying the hypotheses of Theorem 6.12
that is atoroidal has an annulus which is properly embedded and is not isotopic to
the boundary of the manifold. This last statement contradicts that the manifold
is acylindrical, and shows that every component in the JSJ-decomposition must be
Seifert, which proves the theorem.

Any compact 3-manifold, with or without boundary, supporting a foliation by
circles is a Seifert manifold (see [Eps81]). This was not the original definition, a
more descriptive one is the following:

Definition 6.13. A Seifert manifold is a 3-manifold that admits a decomposition
into disjoint circles, the fibers, such that each fiber has a neighborhood diffeomorphic,
preserving fibers, to either

(1) A solid torus foliated by horizontal circles.
(2) A solid torus foliated by the fibration obtained by the identification D2 ×

[0, 1]/x ∼ Rp/q(x), where Rp/q : D2 → D2 denotes the rotation of angle p/q,
and p, q are coprime.

If the manifold has boundary, its connected components are required to be tori, which
are also fibered by circles.

The circles of the first type are the generic fibers, while the ones of the second
type are the singular fibers. For an introduction to Seifert spaces see [Bri93].

Definition 6.14. Let N be a 3-manifold with boundary.

(1) N is atoroidal if every incompressible torus is ∂-parallel, that is, isotopic to
a subsurface of ∂N .

(2) N is acylindrical if every incompressible annulus A that is properly embedded
(i.e., ∂A ⊂ ∂N) is ∂-parallel by an isotopy fixing ∂A.

As we mentioned above, any irreducible orientable 3-manifold having incompress-
ible tori as boundary components admits a natural decomposition into Seifert pieces
on one side, and atoroidal and acylindrical components on the other.
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Theorem 6.15 (JSJ-decomposition - [Hat07]). If N is an irreducible, orientable
3-manifold, having incompressible tori as boundary components, then there exists a
finite collection T of disjoint incompressible tori such that for each component Ni of
N \

⋃
T , either

(1) Ni is a Seifert manifold, or
(2) Ni is both atoroidal and acylindrical.

Any minimal such collection is unique up to isotopy. This means that if T is a
collection as described above, it contains a minimal subcollection m(T ) satisfying the
same claim. All collections m(T ) are isotopic.

Any minimal family of incompressible tori as described above is called a JSJ-
decomposition of N . Note that if N is either atoroidal and acylindrical or Seifert,
then T = ∅.

Let us sketch how Theorem 6.12 is proved for the case of Seifert manifolds; the
other case is more delicate, and we refer the reader to [HHU11] for the complete
proof.

Assume N is a Siefert manifold, so it admits a foliation by circles, which is called
a Seifert fibration. We lose no generality in assuming that one of the incompressible
tori of the boundary of N is an Anosov torus T . By the definition of Anosov torus,
there exists a diffeomorphism φ on N such that it is a linear hyperbolic automorphism
of T . The image of the Seifert fibration by φ is another Seifert fibration, which is
non-isotopic to the original one on T .

But orientable manifolds admitting two Seifert fibrations that are non-isotopic on
its boundary are completely classified:

Lemma 6.16. [Hat07] If N admits two Seifert fibrations that are non-isotopic on
∂N , then N is homeomorphic to either:

(1) the solid torus,
(2) a twisted I bundle over the Klein bottle, or
(3) the torus cross the interval.

In the first two cases ∂N consists of a single torus, while in last one it consist of
two disjoint tori. To finish the proof, it suffices then to discard the first two cases:

Lemma 6.17. If ∂N contains an Anosov torus, then it contains more than one.

Proof. Assume that ∂N is a torus T , and consider the inclusion map i : H1(∂N)→
H1(N). Let ker i be the kernel of the map. Then by Lemma 3.5 in [Hat07], we have

rank(ker i) =
1

2
rank(H1(∂N))



PARTIALLY HYPERBOLIC DYNAMICS IN DIMENSION 3 41

where rank denotes the number of Z summands in a direct sum splitting into
cyclic groups. If ∂M̃ = T , then 1

2
rank(H1(T )) = 1, and hence K = ker i is a

one-dimensional subspace of H1(T ). We have then that f∗(K) = K, where f∗ :
H1(T )→ H1(T ) is the isomorphism induced by any diffeomorphism f : N → N . This
implies that f∗ has 1 as an eigenvalue. Hence, f cannot be isotopic to a hyperbolic
automorphism of T . This implies that T cannot be an Anosov torus. �
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à un tore et non conjugué à une suspension. Ergodic Theory Dynam. Systems, 14(4):633–
643, 1994.

[BP74] M. Brin and Y. Pesin. Partially hyperbolic dynamical systems. Izv. Akad. Nauk SSSR
Ser. Mat., 38:170–212, 1974.

[BPP14] C. Bonatti, K. Parwani, and R. Potrie. Anomalous partially hyperbolic diffeomorphisms
i: dynamically coherent examples. arXiv:1411.1221v1, 2014.

[Bri93] M. Brin. Seifert Fibered Spaces. arXiv:0711.1346, 1993.
[Bru93] M. Brunella. Expansive flows on seifert manifolds and on torus bundles. Bull. Braz.

Math. Soc., 241:89–104, 1993.
[BW05a] C. Bonatti and A. Wilkinson. Transitive partially hyperbolic diffeomorphisms on 3-

manifolds. Topology, 44(3):475–508, 2005.
[BW05b] Keith Burns and Amie Wilkinson. Better center bunching. Preprint, 2005.
[BW08] Keith Burns and Amie Wilkinson. Dynamical coherence and center bunching. Discrete

Contin. Dyn. Syst., 22(1-2):89–100, 2008.
[BW10] K. Burns and A. Wilkinson. On the ergodicity of partially hyperbolic systems. Annals

of Mathematics, 171:451–489, 2010.



42 P. CARRASCO, F. RODRIGUEZ-HERTZ, J. RODRIGUEZ-HERTZ, AND R. URES

[Did03] Ph. Didier. Stability of accessibility. Ergodic Theory Dynam. Systems, 23(6):1717–1731,
2003.

[DW03] D. Dolgopyat and A. Wilkinson. Stable accessibility is C1 dense. Astérisque, 287:33–60,
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