
Jbeil: Temporal Graph-Based Inductive Learning to Infer Lateral Movement in
Evolving Enterprise Networks

Joseph Khoury∗, Dorde Klisura∗, Hadi Zanddizari†, Gonzalo De La Torre Parra‡,
Peyman Najafirad§, Elias Bou-Harb∗

∗Division of Computer Science and Engineering, Louisiana State University, LA, USA
†The Cyber Center for Security and Analytics, The University of Texas at San Antonio, TX, USA

‡The University of the Incarnate Word, TX, USA
§Secure AI and Autonomy Lab, The University of Texas at San Antonio, TX, USA

∗jkhour5@lsu.edu, ∗dklisu1@lsu.edu, †hadi.zanddizari@utsa.edu, ‡gdparra@uiwtx.edu,
§peyman.najafirad@utsa.edu, ∗ebouharb@lsu.edu

Abstract—Lateral Movement (LM) is one of the core stages
of advanced persistent threats which continues to compro-
mise the security posture of enterprise networks at large.
Recent research work have employed Graph Neural Network
(GNN) techniques to detect LM in intricate networks. Such
approaches employ transductive graph learning, where fixed
graphs with full nodes’ visibility are employed in the training
phase, along with ingesting benign data. These two assumptions
in real-world setups (i) do not take into consideration the
evolving nature of enterprise networks where dynamic features
and connectivity prevail among hosts, users, virtualized envi-
ronments, and applications, and (ii) hinder the effectiveness
of detecting LM by solely training on normal data, especially
given the evasive, stealthy, and benign-like behaviors of con-
temporary malicious maneuvers. Additionally, (iii) complex
networks typically do not have the entire visibility of their
run-time network processes, and if they do, they often fall
short in dynamically tracking LM due to latency issues with
passive data analysis.
To this end, this paper proposes Jbeil, a data-driven frame-
work for self-supervised deep learning on evolving networks
represented as sequences of authentication timed events. The
premise of the work lies in applying an encoder on a
continuous-time evolving graph to produce the embedding of
the visible graph nodes for each time epoch, and a decoder that
leverages these embeddings to perform LM link prediction on
unseen nodes. Additionally, we enclose a threat sample aug-
mentation mechanism within Jbeil to ensure a well-informed
notion on advanced LM attacks. We evaluate Jbeil using
authentication timed events from the Los Alamos network
which achieves an AUC score of 99.73% and a recall score
of 99.25% in predicting LM paths, even when 30% of the
nodes/edges are not present in the training phase. Additionally,
we assess different realistic attack scenarios and demonstrate
the potential of Jbeil in predicting LM paths with an AUC
score of 99% in its inductive and transductive settings, out
performing the state-of-the-art by a significant margin.
Index Terms—Lateral Movement, Temporal Graph Neural
Networks, Authentication Logs, Evolving Enterprise Networks

1. Introduction

The distinctive modus operandi of Advanced Persistent
Threats (APT)s, including their employment of Lateral
Movements (LM), typically leaves minimal footprints
within both host and network logs. Consequently, key risk
indicators would remain undetected by Security Information
and Event Management (SIEM) and Network Intrusion
Detection Systems (NIDS) used for identifying suspicious
events, actions, or trends from broad network and systems’
activities. Thus, these detection systems would only be
capable of flagging novice LM which are often based on
common exploitation frameworks, while failing to provide
successful detection measures against LM attempting to
exploit newly surfaced vulnerabilities (and related systems)
or those employing advanced stealthy procedures.
A plethora of methods for inferring host-, network-, and
Internet-based illicit activities (including LM campaigns
and pivoting) have been developed over the years. These
include detection of anomalies via attack graphs [1]–[8],
passive and/or active measurement techniques [9]–[17],
machine learning methods [18], deep learning models
[19]–[21], game theoretic approaches [22]–[24], heuristic
procedures [25]–[29], and graph-based learning approaches
[30]–[37]. Indeed, research on the latter methods has been
rapidly becoming more mature and is being adopted in a
variety of fields, including cyber forensics.

Motivation. To effectively infer LM in enterprise
networks, we aim in this paper to devise and develop
a temporal graph-based inductive learning approach that
embodies two key notions encountered in real-world
scenarios, namely, (i) the evolving/dynamic nature of large
and intricate enterprise networks, and (ii) the pragmatic
cyber threat capabilities of these environments. To motivate
the notion of evolution in enterprise networks and hence
demonstrate the need for effective capabilities which
draw-upon network- and systems’-wide artifacts for LM
detection, we provide herein (as an example) an empirical
analysis of a real-world scenario. As such, we study the

3644

2024 IEEE Symposium on Security and Privacy (SP)

© 2024, Joseph Khoury. Under license to IEEE.
DOI 10.1109/SP54263.2024.00009

20
24

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
9-

8-
35

03
-3

13
0-

1/
24

/$
31

.0
0

©
20

24
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

54
26

3.
20

24
.0

00
09

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

1 0.859 0.814 0.805 0.779 0.775 0.761 0.74 0.743 0.738

0.859 1 0.843 0.814 0.792 0.78 0.772 0.752 0.757 0.75

0.814 0.843 1 0.841 0.813 0.797 0.789 0.765 0.771 0.765

0.805 0.814 0.841 1 0.852 0.821 0.807 0.786 0.786 0.784

0.779 0.792 0.813 0.852 1 0.855 0.825 0.803 0.805 0.793

0.775 0.78 0.797 0.821 0.855 1 0.857 0.819 0.815 0.799

0.761 0.772 0.789 0.807 0.825 0.857 1 0.859 0.831 0.814

0.74 0.752 0.765 0.786 0.803 0.819 0.859 1 0.845 0.813

0.743 0.757 0.771 0.786 0.805 0.815 0.831 0.845 1 0.842

0.738 0.75 0.765 0.784 0.793 0.799 0.814 0.813 0.842 1

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10
Time intervals

Ti
m

e
in

te
rv

al
s

0.75

0.80

0.85

0.90

0.95

1.00

Jaccard
Index

(a) Evolution of nodes: Jaccard similarity matrix showing the drop
of node similarities over time in the network; an approximate 26%
drop in node similarity between the first and last time interval.

0
5000

10000
15000

27 28 29 30

New edges

68,615.9 Avg. new edges 6,737.5 Avg. new edges 5,196.1 Avg. new edges

0e+00
1e+05
2e+05
3e+05
4e+05
5e+05
6e+05
7e+05
8e+05
9e+05
1e+06

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57
Timestamp (days)

Au
th

en
tic

at
io

n
ed

ge
s

New edges (never seen) Repeated edges

(b) Evolution of edges: Depicting the number of new edges (never
seen before) over time. An average of 5,196.1 new edges emerged
between days 39 and 57.

Figure 1: An example study of the LANL computer network’s evolution over 58 days demonstrating the emergence of new
nodes and connected links.

dynamic nature of nodes and edges obtained from a labeled
dataset of authentication events collected from a real-world
computer network at the Los Alamos National Laboratory
(LANL) spanning 58 days. The nodes represent different
users, computers, and servers, while the edges denote the
authentication events among the nodes over time. First, at
10 different time intervals (i.e., 58 days equally divided)
we measure nodes’ similarity at each interval using the

Jaccard similarity index described as J(A,B) = |A∩B|
|A∪B| ,

where sets A and B represent nodes for two consecutive
days. Figure 1a empirically visualises the drop in nodes’
similarities by 26% (between the first and the last time
interval), which indeed showcases the evolving nature of
enterprise networks in terms of new nodes/authenticating
entities. Alternately, Figure 1b illustrates a significant
number of new (never seen before) edges over time.
Herein, on day 30 of the curated data, 10K new edges
(authentication events) have emerged. This evidence sheds
light on the evolving nature of enterprise networks, which
would enable malicious actors to infiltrate and laterally
maneuver covert nodes and related edges. Additionally, it
highlights the difficulty in establishing a sound vantage
point for curating and analyzing relevant empirical artifacts
from dynamically-maneuvered pathways, further adversely
affecting LM detection.

Challenges. Graph Neural Networks (GNNs) have
been previously used in host- and network-based anomaly
detectors to learn models of benign behaviors and to
infer deviations from such models [30]–[35]. Additionally,
discrete-time dynamic information was taken into account
to improve the detection of anomalous activity in a network
while adopting transductive learning approaches [31], [32].
However, little scrutiny has been given to continuous-time
dynamic graph representations and inductive learning in
security problems (e.g., inferring LM attacks). Furthermore,
very limited work have addressed sampling bias, test
snooping, and temporal snooping problems (as described
in [38]) when implementing machine learning models in

computer security contexts. The evolving nature of real and
complex enterprise networks (as previously highlighted)
further exacerbates these challenges. In this context,
Jbeil1 is designed to overcome these grand challenges to
effectively infer LM in enterprise networks.

1 Continuous-time dynamic graphs model dynamic
graphs with continuous representations, offering superior
temporal granularity. Such property circumvents the prob-
lem of temporal snooping (i.e., a security-related problem
[38]–[40]), and is much needed for correctly representing
the underlying distribution under continuous changes found
in real-world enterprise networks, where the detection of LM
attacks is of paramount importance. Continuous-time dy-
namic graphs drastically differ from discrete-time dynamic
graphs, where the latter consist of sequences of static graph
snapshots taken at different intervals in time.

2 Inductive learning in temporal GNNs relates to the
key scenario in which the nodes have not been previously
seen by the model during training but are used for testing.
Unlike transductive learning (see §2), the model must be
able to generalize by learning patterns and relationships
in the seen data to make accurate predictions on the un-
seen data. As such, inductiveness jointly contributes to the
elimination of test snooping when the test set is used for
experiments before the final evaluation [38], as well as in
the context of evolving enterprise networks where new nodes
and edges continue to dynamically emerge.

3 Threat sample augmentation in APT-related attack
scenarios, similar to LM, is crucial to the training stage
of the model for addressing the sampling bias problem
which occurs whenever the data is not very representative
[38]. Such augmentation introduces comprehensive and
diverse attackers’ Tactics, Techniques, and Procedures
(TTPs) (e.g., stealthy or aggressive behaviors, full or
limited network knowledge, etc.) to the temporal GNN

1. An old Phoenician city affiliated with the creation and spread of
the modern alphabet. Though situated on the coast, literally refers to
the mountains—A parallel to the proposed approach being innovative and
possessing thorough visibility.

3645

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

model, hence supporting effective and well-informed
decision-making when tested in practice/operations against
advanced attack strategies. Nonetheless, curating such
exhaustive representative attack data is known to be
extremely difficult [36], [38], [41], and hence auxiliary
threat sample augmentation methodologies ought to be
explored, employed and evaluated.

Contribution. We model a given enterprise network
using a graph of authenticating entities, where the main ob-
jective is to detect anomalous authentication events among
such entities. Such events construct LM paths within the
network. where a LM path is characterized by two funda-
mental properties: (i) the attacker leverages a new set of
credentials, while (ii) ultimately compromising a network
entity that the original actor could not previously access
[25]. Such characteristics are essential for an attacker to
traverse the network to eventually execute their intended
malicious objectives (e.g., stealing or exfiltrating sensitive
data). These behaviors are quite challenging as they might
resemble legitimate authentication channels with valid cre-
dentials in contrast to other noisy attack events. Further,
it is imperative to treat authentication events as relational
data, where the global context along with its temporal
sequence play a vital role in interpreting its behavior. Along
this vein, Jbeil creates an authentication graph, where
nodes represent authenticating entities (such as hosts, users,
virtualized environments, and applications) and edges define
authentication events connecting these entities. Next, we
extract graph features associated with the authentication
graph to comprehend the dynamic nature of the enterprise
network through evolving nodes’ connectivity over time.
We then utilize a self-supervised temporal node embedding
technique where latent representations are computed for
each node in the graph at every time using a message
passing technique that leverages the extracted features. In
other words, Jbeil stores the dynamic state of each node
which is updated whenever a node is involved in an event,
and subsequently, aggregates the memory of the neighboring
nodes when computing the temporal embedding of the given
model; this is done by processing the edges ordered in
time. Finally, a decoder calculates the edge probabilities and
performs LM link prediction.

We train Jbeil as an inductive learning model using
the calculated temporal node embeddings to adapt to the
continuous-time dynamic nature of the data. Specifically,
the training is performed on a visible portion of the data,
which includes both benign and malicious authentication
events to learn about both, individual authentication events
and authentication behaviors of the network as a whole.
We initially evaluate Jbeil on the LANL authentication
logs’ dataset representing a network capture of a real-world
enterprise network with 15,610 nodes. Embedded in these
events are red teaming activities that serve as a ground truth
for LM related activities. Using Jbeil in its inductive
setting, we were able to achieve an AUC of 99.82%
and a recall of 99.22%, even when 30% of the nodes
and edges were never previously introduced during the

training stage. Additionally, we enclose within the pre-
processing stage of Jbeil a threat sample augmentation
mechanism that ensure a well-informed notions on recent
attack scenarios and tactics. We compare Jbeil against
the state-of-the-art, Euler [31], and show the latter’s
limitations against the generated attacks in contrast to the
transductive setting of Jbeil with an average drop of
AUC equal to approximately 40%. Overall, the achieved
results demonstrate the novel inductive capabilities of
Jbeil by generalizing to unseen nodes and its ability to
learn and detect realistic LM campaigns.

In summary, this paper contributes in the following:

• We propose Jbeil, a temporal graph-based in-
ductive learning approach to detect LM in evolv-
ing enterprise networks. The premise of Jbeil
lies in its continuous-time dynamic nature, message
passing and sampling, temporal node embeddings,
and finally its decoder responsible for the LM link
prediction task.

• We introduce within the pre-processing stage of
Jbeil an algorithm to scrutinize graph maps and
node features to semantically represent the dynamic
features and connectivity of entities within the net-
work over time. Additionally, we enclose a threat
sample augmentation mechanism that ensure a well-
informed notions on recent attack scenarios and
tactics.

• We conducted a comprehensive training and evalua-
tion of Jbeil in its inductive settings, showcasing
its unique capability in predicting LM paths. Fur-
thermore, in comparing the transductive setting of
Jbeil to that of the state-of-the-art approaches,
we demonstrated the superior efficacy of Jbeil
in learning benign and malicious behaviors when
inferring novel LM realistic attack scenarios.

• We make Jbeil open source [42] and include all
required artifacts and related methods for ease of
replicability and reproducibility.

The remaining of the paper is organized as follows. In
the next section, we provide relevant fundamental concepts.
In §3, we elaborate on the methodological approach embed-
ded within Jbeil. We present in §4 the various evaluation
setups, experiments and results. Then, §5 present related
work. Finally, §6 concludes this work and pinpoints a few
endeavors which aim at paving the way for future work.

2. Preliminary

2.1. Lateral Movement and Authentication Logs

LM is a set of internal movements performed by threat
actors to propagate inside an enterprise network with the
objective of compromising valuable assets (e.g., privileged
users, servers, data, etc.) [43], [44]. Initially, the threat actor
gains a foothold within a network using techniques such as

3646

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

T=0

External/Internal
Attacker

Benign
User

Compromised
User

T=1

T=1

Initial
Compromise

Benign
Authentication

Compromised
Machine

Benign
Computer

T=2
Benign
Server

Expected
Access

Foothold
Establishment

Compromised
Admin User

T=2

Privilege
Escalation

T=N
Compromised

Machine

Lateral Movement (LM)
(Mal. Authentication) +
Maintain Access

Unexpected
Access

External/Internal
Attacker Goal

 Time (T)

T=N+1
Compromised

Asset

T=N+2

Complete
Mission

Collect and Analyze Network-
based Authentication Events

Network Intrusion
Detection System (NIDS)

T=N
Pool of

Intelligence

Figure 2: A chronological diagram showcasing the six main stages of an APT attack including LM. Situated at the center
of the APT chain, LM is considered one of the main tactics which enables perpetrators to maneuver within the network
to broaden their span of access and ultimately complete their illicit objective. LM may occur many times and its detection
necessitates careful attention to the spatial and temporal aspects of the events. Our proposed approach Jbeil primarily
relies on authentication events; one of the primary interface mechanisms among the neighboring and adjacent systems in
an enterprise. As such, examining time-stamped authentication events provides an opportunistic vantage point for analyzing
malicious events occurring among entities which do not (or rarely) interact.

those identified in the MITRE ATT&CK framework [45].
The subsequent propagation through the network is achieved
by exploiting vulnerabilities in existing enterprise entities
or authentication protocols [46]. Among the techniques pre-
sented in the MITRE ATT&CK framework, specific ones are
used for acquiring privileged credentials and unauthorized
access during the LM stage [47]–[54]. It is worth noting
that LM can be performed manually and/or autonomously
(using for instance dedicated malware). Figure 2 presents a
time-based overview of the APT attack chain including LM
while emphasizing on the crucial role in which time-stamped
authentication events exert for inferring LM in enterprise
networks. As such, commonly recorded authentication logs
generated by various assets in an enterprise network can
serve as a (threat) data source to detect suspicious activities
that are in close rapport with LM. To curate such activities,
network-wide systems such as NIDS and/or SIEM collect
and analyze network-based authentication events. Previous
research works [31], [32], [55] have leveraged authentication
logs for detecting and identifying LM originating from
malicious login attempts and unauthorized access. Such
methods mainly rely on signature-based or anomaly-based
algorithms. While many of these previous methods provide
valuable merits for detecting LM in enterprise networks,
most of these systems still generate a high volume of false
positives and negatives, and/or fail to differentiate between
benign and malicious events. To that extent, via Jbeil, we
aim to explore the trustworthiness of graph-based learning
methods for modeling and detecting LM activities using
authentication logs.

2.2. Transduction and Induction Reasoning

Link prediction is one of the most important tasks in
analyzing graph data [56] given the benefits it can offer
in cyber fraud detection, recommendations systems, and
knowledge graph completion [57]–[59]. Transductive and
inductive methods are two major types of link prediction.
The majority of existing work, including [31], [60]–[62],
rely on a transductive approach; the adjacency matrix con-
tains all nodes related to the training and test datasets. That
is all sets of existing nodes are known and are used during
training. In contrast, in the inductive learning approach, all
nodes are not required to be known during the training pro-
cess. Due to such advantage over the transductive approach,
the inductive approach allows models to tackle practical
problems in production where the model would certainly
encounter previously unseen nodes during the training pro-
cess; in such settings, the only information available to the
model would be some attributes of the new nodes used
to make a prediction. Figure 3 illustrates both transductive
and inductive reasoning where inductive nodes and links are
shaded to differentiate them from previously known nodes
(i.e., solid nodes and links) in the transductive case. In
an evolving enterprise network, one often encounters many
unseen (i.e., new nodes) that attempt to communicate with
known and/or unknown entities.

Existing GNN models trained within transductive set-
tings are incapable of predicting or classifying new nodes
or links. While specific applications may exist where trans-
ductive approaches fit very well, many practical applications
require inductive approaches to deal with newly integrated
nodes. GraphSAGE [63], a recent work addressing inductive
link prediction, computes embeddings for unseen nodes

3647

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

Time (T)Time (T)

Unprocessed Intelligence (entities and events)
- never seen before or due to resource constraints

Limited Intelligence (Inductive Reasoning)Full Intelligence (Transductive Reasoning)

T=0
T=3

T=2

T=5

T=4

T=4

T=7
T=6

T=8

T=9
T=1

T=7

T=0
T=3

T=2

T=5

T=4

T=4

T=7
T=6

T=8

T=9
T=1

T=74 T=7

Compromised user,
machine, server

Benign user,
machine, server

Legend:

Figure 3: An illustrative comparison between transductive and inductive reasoning in machine learning, specific to a lateral
movement scenario inside an enterprise network. In transductive reasoning, all nodes and edges are part of the training
process, while in inductive reasoning some nodes and edges are excluded to be later used in the testing stage.

but the information about the nodes’ edges is required. In
G2G [64], the authors propose an inductive link prediction
for unseen nodes without local structures. However, their
approach cannot differentiate nodes with common attributes,
mainly because their model does not capture the structural
information within the nodes’ representations. In [65], the
authors propose a dual-encoder graph embedding with an
alignment for inductive link prediction on unseen nodes
where only attribute information is used. Nonetheless, their
approach heavily relies on node attributes and does not
incorporate the temporal information associated with the
interactions among the nodes.

3. Proposed Approach

For modeling and detecting LM behaviors in evolving
enterprise networks, we first introduce a pre-processing
pipeline for generating a graph structure (derived from the
information found in benign and threat augmented authenti-
cation logs) by extracting graph maps and calculating graph
features. We then discuss Jbeil, our proposed temporal
graph-based self-supervised inductive learning technique for
detecting LM paths. We make Jbeil open source on
GitHub [42].

3.1. Pre-processing Pipeline

3.1.1. Threat Sample Augmentation. Devising a prag-
matic LM detection approach necessitates well-informed
notions on recent attack scenarios and tactics. It is also
crucial to remediate the sample bias challenge faced in
machine learning techniques [38]. However, acquiring real-
world LM attack data is known to be extremely difficult
[25], [36], [38]. For such reasons, we embed a threat sample
augmentation procedure within the pre-processing pipeline
of Jbeil based on the attack synthesis framework estab-
lished by Ho et al. [25]. The algorithm used for that purpose
is rooted in the breadth-first search (BFS) graph traversal
algorithm. Given any enterprise network architecture, we
represent the network as a computational graph and utilize
the BFS algorithm to parse all the network nodes; enabling

the comprehension of the joint spatial, contextual, and tem-
poral topology of the network. This step is important for
enabling tailored threat sample augmentation which adheres
to the nature and characteristics of the network. The aug-
mentation is performed in two stages. First, random nodes
are selected as footholds to initiate the attacks. Second,
LM logins are executed by identifying the shortest path to
privileged credentials that can access a high-value asset and
then the shortest path to the high-value asset using these new
credentials. More details on this augmentation scheme, its
related generated datasets and experimentation is provided
in 4.2.2 and 4.4.2, respectively.

3.1.2. Graph Building and Graph Feature Extraction.
Apart from attributes gathered from commonly recorded
authentication logs, additional features pertaining to the con-
nectivity dynamics of the network entities are not available.
Additionally, the proposed model requires a good graph
representation of the network coupled with an effective
encoding of its hosts’ connectivity. To this end, we make
use of host authentication logs to scrutinize the necessary
graph features that represent the dynamic nature of the
enterprise network as well as the connectivity properties
of its hosts and users. The generated graph features are
primarily based on the in-degrees and out-degrees of the
different hosts and users which are used to support Jbeil’s
message-passing mechanism among the neighboring hosts.
We note that Jbeil by default incorporates host-only in-
teraction information; however, additional interaction infor-
mation pertained to users connectivity is equally needed
during the learning phase. To calculate the graph features
induced by the different graph interactions (i.e., host-to-
host, user-to-host, host-to-user, user-to-user), we follow the
approach proposed in [55], [66] to extract the graph map and
subsequently calculate the graph features. Figure 4 illustrates
the pre-processing pipeline that we follow to extract the
graph features and build the graph representations.

In summary, in step 1 , we make use of attributes found
in commonly collected authentication logs (and autentica-
tion logs associated with our augmented threat sample, see
§3.1.1). In step 2 , we extract the graph maps representing

3648

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

N: tN, sN, uN, dN

...

N+1: tN+1, sN+1,

uN+1, dN+1

N+n: tN+n, sN+n,

uN+n, dN+n

...

1: t1,s1,u1,d1

...

2: t2,s2,u2,d2

N: tn,sn,un,dn

...

In-Degrees Map:
1: InUsrMap{}
2: InSrcMap{}
3: InUsrSrcMap{}

Out-Degrees Map:

4: OutUsrMap{}
5: OutDstMap{}
6: OutUsrDstMap{}

1

Enterprise Network
(Benign activities)

Threat Sample Augmentation Based
on the Enterprise Network Architecture
(Rationale Augmentation)

Collect and Store
Benign and Threat
Augmented Auth Logs

Extract Graph Map
from Auth Logs

Calculate Graph Features
using Graph Map

T=0
T=3

T=2

T=5

T=4

T=4

T=7
T=6

T=8

T=9T=1

T=7

Temporal Graph Representation
(Time, Src, Dst, Graph Features (F))

Fi

Fi Fi Fi Fi

Fi Fi Fi Fi

Fi

1

2 3

4

In-Degrees Features:
1: In_Unique_Usr
2: In_Unique_Src
3: In_Unique_UsrSrc

Out-Degrees Features:

4: Out_Unique_Usr
5: Out_Unique_Dst
6: Out_Unique_UsrDst
7: Out_Day_Avg_Usr
8: Out_Day_Avg_Dst
9: Out_Day_Avg_UsrDst

Figure 4: The pre-processing pipeline that depicts the four steps that we follow (i) leverage and correctly format common
authentication logs’ attributes (i.e., timestamp, source host, destination host, and user), (ii) extract the graph map, (iii)
calculate the graph features, and (iv) aggregate the authentication logs’ attributes with the graph features. The outcome is
utilized as an input for our proposed approach Jbeil.

different interactions within the network. In step 3 , we gen-
erate new graph features based on the previously extracted
graph maps. Finally, in step 4 , we derive a temporal graph
representation capturing time-stamped authentication events
among the various nodes and the newly generated graph
features. A thorough description of these four distinct steps
is presented in the sequel.

Graph map extraction. We initially utilize attributes
found in commonly collected authentication logs. Such at-
tributes include timestamp t, source host src, targeted user
usr, and destination host dst. This initial step is shown in
Figure 4 step 1 . In step 2 of the pre-processing pipeline,
we leverage the previously mentioned authentication log
attributes to generate a graph map (i.e., a set of dictionaries)
to represent the connectivity between each host and user
within the network. We note that calculating the graph maps
is essential to preserve users’ interaction information since
the targeted user attribute usr is omitted in the final graph
representation.

After obtaining this initial representation, we extract
six different dictionaries, namely: (i) in-degree dictionaries,
which map the number of incoming authentication events
recorded at each host per usr, src, and (usr, src) combina-
tion per day (i.e., InUsrMap, InSrcMap, InUsrSrcMap), and
(ii) out-degree dictionaries, where the number of outgoing
daily authentication events recorded at each host per usr,
dst, and (usr, dst) combination are mapped (i.e., OutUs-
rMap, OutDstMap, OutUsrDstMap). To calculate the daily
interactions between nodes, we capture calendar dates from
the epoch time t. Algorithm 1 presents the InDegrees
function to calculate the in-degrees graph map dictionar-
ies, namely, InUsrMap, InSrcMap, and InUsrSrcMap.
Specifically, InDegrees() takes as arguments an empty
dictionary and its corresponding target x which can be
the source Src, the user Usr, and the combination of
both Src Usr. Computing the dictionaries of the out-
degrees graph maps, namely, OutUsrMap, OutDstMap,
OutUsrDstMap follows the same approach, but with a
small difference where the graph maps at hand should be
associated with a source node rather than a destination node.

Algorithm 1: Extract in-degrees graph map from
authentication logs.

Require: Authentication logs AuthLogs
Ensure: GraphMap :

InUsrMap, InSrcMap, InUsrSrcMap
Ensure: x : Src, Usr, Src Usr

0: procedure INDEGREES(GraphMap, x)
1: for all ts, Src, Usr,Dst ∈ AuthLogs do
2: if Dst �∈ GraphMap then
3: GraphMap[Dst]← {}
4: end if
5: if Usr �∈ GraphMap[Dst] then
6: GraphMap[Dst][x]← {}
7: end if
8: day ← ts/86, 400
9: if day �∈ GraphMap[Dst][x] then

10: GraphMap[Dst][x][day]← 0
11: end if
12: GraphMap[Dst][x][day]←

GraphMap[Dst][x][day] + 1
13: end for
13: return GraphMap
13: end procedure=0

The implementations of the graph maps are found on GitHub
[42].

Graph feature calculation. In step 3 of the pipeline,
we calculate the graph features using the previously gener-
ated dictionaries, which now serve as a graph map repre-
senting all interactions within the network. The calculation
of the graph features is conducted as follows:

First, we calculate the number of hosts, users, and
host-user combinations targeting a specific host using the
graph map dictionaries. Particularly, we iterate over all the
authentication events to calculate (i) the number of users,
hosts, and user-host combinations per destination host (i.e.,
In Unique Usr, In Unique Src, and In Unique UsrSrc),
and (ii) the number of users, hosts, and user-host

3649

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

combination per source host (i.e., Out Unique Usr,
Out Unique Dst, and Out Unique UsrDst). Contextually,
amid LM, numerous authentication events with ranging
frequencies are used by threat actors to propagate within
an enterprise network and compromise additional assets.
As such, these authentication events may conclude with
successful or failed attempts. In either case, such activity
will result in an increased number of involved hosts, users,
and host-user combinations targeting or being targeted by
a specific host. Thus, the newly generated features will
append important semantics associated with the connectivity
dynamics among hosts and users.

Second, we calculate the daily frequencies of out-
degrees pertaining to each host. In essence, we loop over
all the authentication events and calculate the daily average
interactions of each user, host, and user-host interactions
associated with the source host (i.e., Out Day Avg Usr,
Out Day Avg Dst, and Out Day Avg UsrDst).

To summarize, calculating these aforementioned features
adds valuable semantic meaning to each node as each fea-
ture provides additional insights into the node’s dynamic
behavior while preserving key information associated with
users’ connectivity dynamics within a network. We highlight
in §3.2 the importance of these features in computing the
nodes’ temporal memories and embeddings.

Temporal graph structure representation. At step 4
of Figure 4, we combine the previously formatted authen-
tication logs from step 1 with the calculated features at
step 3 , as well as, the label of the authentication event
(i.e., malicious or benign) to produce the final graph rep-
resentation. That said, the graph G will be defined as
G = {et0, et1, et3, ...}, where e represents an authentication
event at time t. Each event e comprises the timestamp
value of the authentication event t, the source host src,
the destination host dst, the label of the event l, and the
graph features of source and destination, vsrc and vdst,
respectively. Herein, an event e is defined as follows:
e = {t, src, dst, l, vsrc, vdst}.

3.2. Jbeil: Temporal Graph-Based Inductive
Learning to Infer LM

We propose in this work Jbeil, a temporal graph-based
inductive learning approach rooted in Temporal Graph Net-
works (TGN) [67] to deal with dynamic graphs represented
as sequences of timed authentication events within enterprise
networks. Dynamic graphs are primarily characterized by
their evolving features and connectivity across time. As pre-
viously motivated, enterprise networks are indeed evolving
in nature and comprises active nodes consisting of hosts,
users, virtualized environments, and applications that are
continuously and/or recurrently exchanging authentication
events. Coextendingly, threat actors infiltrate and propagate
within dynamic enterprise networks to compromise targeted
nodes while evading conventional detection techniques. To
this end, Jbeil uniquely supports continuous-time dy-
namic graphs represented as a sequence of time-stamped

authentication events to calculate the temporal embedding
of graph nodes, thereby learning from both temporal and
topological data.

3.2.1. Temporal node memory. LM attacks are persistent
by nature and remain undetected for an extensive period
of time. To this extent, we utilize the memory module of
Jbeil to retain long-term dependencies for each node in
the graph. For every interaction event occurring at time t,
we calculate the memory m of each participating interaction
node. The calculated memory represents the history of in-
teractions for each node, which is computed every time the
node participates in an interaction event. Originally, at t=0
all the memories are initialized with the node features (recall
§3.1.2). For instance, consider Figure 5 which illustrates
at 1 an interaction event at time t where node i is the
destination node and nodes j, k, l and o are the source nodes.
We note that node o has been previously compromised,
which means that its memory at t− 1 already encompasses
information that reflects this situation. As such, the newly
calculated memory of node i shown at 2 will in fact be
affected by all its neighboring nodes, including node o. In
any interaction event at time t, the memory of the source
node and the destination node are calculated using Equations
1 and 2, respectively.

msrc = msgsrc(msrc(t− 1),mdst(t− 1), t) (1)

mdst = msgdst(msrc(t− 1),mdst(t− 1), t) (2)

In this work, we use the msg() function as a simple
concatenation of the inputs. Additionally, msg() is a learn-
able function using a recurrent neural network (i.e., Gated
Recurrent Unit GRU [68]) and is updated for every event
occurring at time t and involving two nodes. To recapitu-
late, utilizing the memory module in Jbeil is important
for learning within dynamic enterprise networks due to its
ability to store and act-upon long-term information (i.e., a
history of interactions) about a node, which is crucial when
addressing the LM problem.

3.2.2. Temporal node embedding, inference, and train-
ing. Subsequently, we utilize the embedding module of
Jbeil to calculate the temporal embedding of node i for
each time t by aggregating the temporal node memory
of all neighboring nodes coupled with its own previously
calculated graph features (recall §3.1.2). For example, step
3 of Figure 5 presents the computation of the final temporal
embedding of node i at time t using Equation 3.

zi(t) =
∑

(0,t)

h(ssrc(t), sdst(t), vsrc(t), vdst(t)) (3)

We note that h() is a learnable function which may
include different formulations such as a simple identity
function which uses the memory as a node embedding
or an attention function (attention is used in Jbeil to
ensure adequate visibility) which aggregates information
from L-hop temporal neighborhoods [67]. s(t) and v(t)
represent the current node memory and the node feature

3650

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

For every interaction event occurring at time t Calculate embedding of node i at any time t

i

j

k

o

l

i

j

k

o

l

1. Interaction events between source
nodes j, k, l, o and destination node i at
time t

2. Calculate the memory m for each
interaction node at time t using previous
memories m at time t-1

o mo

mi

mj

k
mk

l ml

i

j

k

o

l

o mo

mi

mj

k
mk

l ml

3. Compute the final temporal embedding
for each node using the graph at any
time t

zi(t)

zi(t) =
embedding(i, t)

i

(1)

(2) (3)

Figure 5: An illustrative representation of an authentication interaction event occurring among node j, k, l, o, and i at time t.
Node o is a compromised node. Additionally, we showcase in this illustration the temporal node memory and the temporal
node embedding modules of Jbeil in step (2) and step (3) respectively. Memory m is calculated for each interaction
node using previous memories calculated at t − 1. The memories are calculated using functions msgsrc and msgdst for
each source node and destination node respectively. Finally, the temporal embedding of node i at time t is calculated by
leveraging the memories of the neighboring nodes at t using the function zi(t) = embedding(i, t).

vector, respectively. As such, calculating the temporal node
embedding of i, zi(t) involves all its temporal neighboring
nodes j ∈ J . Computing a node’s temporal embedding
can solve the staleness problem caused by inactivity, which
occurs when a node no longer updates its memory, causing
it to become stagnant. This problem occurs when a process
remains dormant for a long time or when a user is idle for
an extended period. Temporal embedding can mitigate this
issue since it depends heavily on the memory and features
of neighboring nodes. Finally, after mapping the continuous-
time dynamic graph into node embeddings, we leverage
Jbeil’s decoder which takes one or more node embeddings
and perform link prediction by providing the probability of
an authentication event (path/edge).

Jbeil is trained using a self-supervised approach (i.e.,
self-supervised link prediction) to detect LM activities using
temporal and topological data of both benign and malicious
authentication events. In contrast to learning just from nor-
mal data (as implemented in state-of-the-art), which limits
the inference of novel LM attack scenarios (as demon-
strated in §4.2.2), Jbeil possesses the unique capability to
successfully capture such scenarios using the augmentation
method previously discussed (see §3.1.1).

4. Evaluation

Herein, we conduct a thorough experimentation and
evaluation of Jbeil to demonstrate its effectiveness against
various LM attacks within enterprise networks. The ob-
jectives are to assess its detection metrics under different
LM attack campaigns, validate its inductive capabilities via
detection of previously unseen nodes/edges/attacks, while
corroborating its superior transductive abilities against a
state-of-the-art approach. Additionally, for practically and

scalability reasons, its time complexity and inference time
is also benchmarked and validated.

4.1. System Setup

We develop, train, and test Jbeil in Jetstream Cloud
[69] using the TG-CIS200038 allocation. The host system
consists of a GPU-based virtual machine of size g3.xl
(32 vCPUs, 125GB RAM, 60GB HDD, and 250GB of
ephemeral storage) which was deployed with an Ubuntu
20.04.4 image and Docker Engine v20.10.12. The pytorch
container image “nvcr.ionvidiapytorch - 22.05-py3” from
NGC was used as the development environment during
the experimentation process. Torch v1.11.0+cu113 was pre-
installed in the container and igraph v0.9.11 was added to
support all experiments.

4.2. Datasets

4.2.1. LANL and Pivoting Datasets. In our study, we
leverage a de-identified dataset collected from various
sources within the Los Alamos National Laboratory’s
(LANL) [70] corporate internal computer network. The data
collection spans over 58 days and includes benign authen-
tication logs and a set of pre-defined red teaming events.
The empirical data originates from Windows-based desktop
computers and active directory servers. Additionally, we
employ the anonymized Pivoting dataset [29] consisting of
real network traffic captured by probes situated in a large
organization. The network flows are collected over an entire
working day and represent communications among internal
hosts, as well as labeled flow that are part of a pivoting
activity. Such network-based datasets can effectively reveal
internal activities of interest that will help in modeling and

3651

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

Table 1: The Los Alamos National Laboratory’s (LANL)
corporate internal computer network dataset and the Pivoting
dataset captured by probes situated in a large organization.

Dataset Nodes Edges Type Duration

LANL [70] 15,610 49,341,300 Net. Auth. logs 58 Days

Pivoting [29] 1,015 74,551,643 Network flows 1 Day

detecting LM within large and dynamic enterprise networks.
Table 1 provides a brief summary of the employed datasets.
Both datasets are transformed into graph representations
comprised of (i) nodes; representing hosts and users and (ii)
edges; representing network flows and authentication events
among the nodes at a given time.

4.2.2. Augmented Threat Data. As previously described
in §3.1.1, we embody in our approach an attack synthesis
framework, namely, lateral-movement-simulator
[25], [71] that is capable of generating a wide variety of real-
world attack scenarios and tactics to practically augment
Jbeil with threat sample data. The framework developed
in [25] is designed and implemented for a specific (propri-
etary) dataset and thus does not port by default to other
authentication log datasets. As such, the tool, along with
its generated attacks (in [25]), has not been borrowed or
directly applied to Jbeil and LANL dataset. Particularly,
we made a considerable effort to modify its design and
implementation, rendering it generic to accept any authen-
tication dataset. Additionally, to generate multiple attacks,
we develop two auxiliary methods: the first for producing n
number of LM attacks and the second for embedding these
attacks into a benign dataset; in our case herein, we use
the LANL dataset, which incorporates commonly recorded
authentication logs.

To this end, using our modified version of the tool we
generate realistic LM attack entries that are specifically
tailored to (and in coherence with) the LANL network
infrastructure. The generate entries begin at a random date
and time to create randomness. We start by randomly se-
lecting nodes in the LANL data as initiating victims, whose
machines served as compromised footholds for attackers to
launch their LM (i.e., foothold establishment). As such, for
each selected victim, we generate different attack scenarios.
The generated attack scenarios and their related experimen-
tation are thoroughly elaborated in §4.4.2.

4.3. Evaluation metrics

Optimal threshold using ROC curve. The LANL
dataset has skewed data proportions where the number of be-
nign data points excessively exceeds the malicious ones (i.e.,
LM paths). Therefore, to address this problem, we leverage
the ROC curve to find the optimal threshold for our imbal-
anced data. In essence, we calculate the geometric mean
(i.e., G-mean) of sensitivity (i.e., recall) and specificity,
which is one of the de-facto unbiased evaluation metrics
for imbalanced classification. We use this optimal threshold

to classify the prediction scores during the evaluation stage
of Jbeil.

Precision score. We use this metric to quantify the
positive class prediction that belongs to the positive class.
As such, the precision score of Jbeil indicates its quality of
correctly inferring LM without blocking legitimate authen-
tication. The precision score is defined as follows.
Precision score = True Positives/(True Positives +
False Positives).

Recall score. We use this metric to measure the count
of the positive class that the model can correctly predict
over all the actual positive values. In other words, the recall
score of Jbeil signifies the percentage of correctly inferring
LM without missing any small number of LMs. The recall
score is defined as follows.
Recall score = True Positives/(True Positives +
False Negatives).

Average Precision (AP) score. We use this to compile
the precision and recall curve as the weighted mean of
precision at each threshold n. The AP score is defined as
follows.
AP =

∑
n(Recalln −Recalln−1)× Precisionn.

Area Under the Curve (AUC) score. We use this
to quantify the proportion of true positives in contrast
to the proportion of false positives. It is the area un-
der the curve created by plotting the True Positive Rate,
TPR = TP/(TP + FN) and the False Positive Rate,
FPR = FP/(FP+TN) as the thresholds for classification
change.

4.4. Experiments

4.4.1. Induction Reasoning Experimentation. Since
Jbeil supports inductive and self-supervised learning, we
explicitly mask an X random sample of nodes with their
corresponding connected edges to train only on visible
nodes/edges. Contextually, this evaluation attempts to in-
fer/test for (previously) unknown/unseen attacks by only
learning on a set of known events. We note that the masking
process does not affect the temporal sequence of authenti-
cation events within the data. Knowing that enterprise net-
works are dynamic in nature and continuously involve newly
emerged network entities, we conduct herein three experi-
ments which demonstrate the unique inductive capabilities
of Jbeil in predicting LM paths on unseen nodes/edges.
To accomplish this, we randomly mask nodes and edges
in the LANL dataset at three different ratios (i.e., 30%,
40%, 50%) to perform the inductiveness testing. We ran the
experimentation several times to validate the consistency of
the results. Note that the masked nodes are never introduced
during the testing stage. Table 2 presents Jbeil’s results
via the induction reasoning experimentation.

For each experiment, we train Jbeil using a specific
number of training nodes, then we perform a transductive
evaluation by leveraging a test samples with previously seen
nodes. Subsequently, using the same trained model we use
the masked nodes to conduct an inductive test and thus eval-
uate the performance of Jbeil on unseen nodes. At each

3652

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

Table 2: Jbeil’s inductive reasoning experiments: In Experiment 1, we use 9,886 nodes to train the model and 1,041 for
transductive evaluation. We also use (15,610 - 9,886 - 1,041 = 4,683) as inductive test nodes (unseen nodes). In Experiments
2 and 3, we decreased the number of the training nodes to obtain more unseen nodes. The obtained results highlight the
generalizability of Jbeil where it can provide comparable performance to predict seen and unseen nodes, i.e., inductive
performance is almost the same as the transductive one.

Experiments Experiment 1 Experiment 2 Experiment 3
Training nodes 9,886 8,423 6,943

Reasoning Transductive Inductive Transductive Inductive Transductive Inductive
Nodes # 1,041 4,683 943 6,244 862 7,805

Precision (%) 98.93 98.48 97.65 97.52 67.85 66.83
Recall (%) 99.22 99.25 91.47 91.23 97.58 97.76

AP (%) 99.80 99.63 93.72 93.49 67.45 66.49
AUC (%) 99.82 99.73 94.76 94.59 75.62 74.55

experiment, we reduce the number of training nodes and
correspondingly the transductive test samples, and on the
other hand, we increase the number of inductive test samples
to demonstrate the capabilities of Jbeil at different levels.
Furthermore, we train Jbeil over 10 epochs using a 0.005
learning rate and a patience factor of 5.

Experiment 1. We randomly mask 30% of the LANL
dataset (15,610 * 0.3 = 4,683 nodes) as an unseen test
samples to evaluate the inductive performance of Jbeil.
Referring to Table 2, we train Jbeil using 9,886 nodes
and perform a transductive evaluation using previously seen
1,041 nodes. Jbeil achieves an AUC, AP, Recall, and
Precision scores of 99.82%, 99.80%, 99.22%, and 98.93%
respectively. These results are in fact very high knowing that
the transductive testing nodes were all introduced during
training. Now, using 4,683 previously unseen nodes during
training, Jbeil achieves an AUC, AP, Recall, and Precision
scores of 99.73%, 99.63%, 99.25%, and 98.48%, respec-
tively. This inductive test results are almost the same as
the transductive ones demonstrating the unique capability
of Jbeil to generalize on unseen nodes. As such, we
conclude from experiment 1 that Jbeil can efficiently
learn the time sequentiality and semantics of authentication
events and successfully predict LM paths on unseen nodes
in evolving enterprise network where 30% of its nodes
were never seen. Such variation in unseen nodes can be
contextually associated with unprocessed threat indicators,
stealthy 0-day attacks exploiting covert LM paths, lack of
broad data visibility, or the inception of new nodes linked
to newly emerged hosts/users.

Experiment 2. Subsequently, in experiment 2 we aim
to overburden Jbeil by increasing the number of masked
nodes to 40% (15,610 * 0.4 = 6,244 nodes) and accordingly
train Jbeil using only 8,423 nodes. We observe in Table 2
a decline in the transductive test evaluation on 942 samples
were Jbeil achieves an AUC score of 94.76%, with a drop
of almost 5%. Reducing the number of nodes during training
have a direct negative impact on the number of neighboring
nodes which are essential in computing the node embedding,
hence the decay in effectively learning the time sequentality

and semantics of both benign and malicious (i.e., LM paths)
authentication events. Since we are using the same trained
model to perform the inductive evaluation, we observe a
similar drop in the test results were the AUC score reached
94.59% on unseen nodes. Although the results are lower
than experiment 1, yet, we can deduce that Jbeil is still
robust and generaizable to newly emerged graph nodes
and interactions, and hence capable of performing LM link
predictions in evolving enterprise networks were 40% of the
network entities are newly emerged.

Experiment 3. In this experiment, we further increase
the number of inductive nodes to 50% (15,610 * 0.5 =
7,805 nodes) and train Jbeil on only 6,943. In fact, this
experiment falls under a maximal plot where the number of
unseen nodes exceeds the number of seen nodes used during
training (extreme inductive case). Nonetheless, this case
can help us understand the utmost capabilities of Jbeil
and also provide us with valuable recommendations and
guidance on the adequate intelligence needed to achieve
successful LM path predictions in evolving enterprise net-
works. Table 2 shows an AUC score of 75.62% on 862
visible nodes and an AUC score of 74.55% on 7,805 masked
nodes. In this particular case, the number of training nodes
and edges is significantly smaller than that of the testing
(masked) ones. As a result, message passing, aggregation,
and sampling in Jbeil are negatively impacted, ultimately
affecting the calculated temporal node embedding. Specif-
ically, these embeddings are unable to capture sufficient
knowledge from their spatial and temporal neighborhoods
(connected nodes and linked edges) due to the limited num-
ber of neighboring nodes present during training. However,
during the testing stage, the previously masked nodes and
edges become unmasked, thereby adding substantial infor-
mation to the graph that Jbeil did not encounter during
training. This discrepancy between the training and testing
datasets ultimately impacts the performance of Jbeil in
predicting the outcomes of new samples. Nonetheless, this
experiments clearly highlight the maximal limit of Jbeil
while providing unique and practical insights on the training
and testing strategies of our approach.

3653

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

Table 3: Jbeil’s generalizability: An inductive and trans-
ductive experiment on the Pivoting dataset [29].

Training nodes 1,015
Reasoning Transductive InductiveNetwork Flows
Nodes # 609 406

Precision (%) 99.12 99.09
Recall (%) 97.09 97.42

AP (%) 97.72 97.84
Pivoting dataset

AUC (%) 98.12 98.26

Table 4: Jbeil’s results for detecting LM under Attack
Scenarios 1, 2 and 3.

Training nodes 9,886
Reasoning Transductive InductiveAuthentication attacks
Nodes # 1,041 4,683

Precision 99.21 99.31
Recall 98.17 98.84

AP 99.67 99.49
LANL - scenario 1

AUC 99.66 99.61

Precision 99.38 99.31
Recall 98.24 99.08

AP 99.61 99.44
LANL - scenario 2

AUC 99.54 99.60

Precison 99.17 99.27
Recall 97.95 98.83

AP 99.59 99.36
LANL - scenario 3

AUC 99.54 99.54

To establish the generalizability of our approach, we
conducted a comprehensive evaluation of Jbeil based on
the Pivoting dataset [29]. We first mask 40% of the original
dataset (i.e., 1,015*0.4 = 406 sample nodes) to generate an
unseen test set and then we train the model on the rest of the
data. The results of this evaluation are presented in Table
3, which shows an impressive AUC score of 98.26% and
a precision of 99.09%, demonstrating the excellent gener-
alizability of Jbeil to different network-based datasets.
Moreover, these results underscore the unique inductive
capabilities of Jbeil, which can consistently provide high-
quality predictions even for nodes that were never encoun-
tered during training.

4.4.2. Augmented Threat Sample Experimentation. By
introducing the benign LANL dataset (cleaned from the
red teaming activities) to our self-modified empirical attack
synthesis framework by Ho et al. [25], [71] we specifically
generate and instrument a wide variety of real-world LM
attacks that conforms to the LANL network system and data
distribution. Subsequently, we embed these attacks in the
LANL dataset to ultimately achieve a sample augmentation
mechanism in Jbeil’s pre-processing pipeline.

Within this attack synthesis framework, different param-
eters are available to define practical LM attacks. These
include attackers’ stealthiness, goals, and knowledge; we
use these to generate distinct and realistic attack scenarios.
Specifically, the attack framework generates logins by ad-
hering to the predefined scenario’s parameters. For instance,
these parameters are used to specify when an attack succeeds
and how the attacker maneuvers through the network, while

(a) t1 (b) t2 (c) t3

Figure 6: A depiction of the augmented threat datasets
showing lateral movement attacks across time intervals t1,
t2, t3 utilizing the Fruchterman-Reingold layout. The first
row depicts Scenario 1, the second-row Scenario 2, and the
third-row Scenario 3. Nodes colored differently at time t2
indicate newly compromised nodes from time t1, and nodes
colored differently at time t3 indicate newly compromised
nodes from time t2.

also maintaining how much the attacker knows about the
network. The attack framework generated and integrated
1,801 realistic LM attacks into the LANL dataset. These
were organized across three distinct attack scenarios (as
below). For each, the LM attack framework chose target
nodes at random.

Scenario 1. Here, the attacker only knows about the
history of the machines which they have previously maneu-
vered into, and the attack stops producing new logins once it
has acquired access to a system to which its initial victim did
not have access to. The attack framework produced 695 of
these attacks and incorporated them into the LANL dataset.

Scenario 2. The attacker is knowledgeable of the whole
network topology. The attack terminates after accessing 50
devices or logging into every machine accessible with the
final credential set. In addition, the attacker only generates
logins that traverse edges that valid users have already
traversed. The attack framework generated 606 of these
attacks and incorporated them into the LANL dataset.

Scenario 3. Here, the attacker is knowledgeable of the
whole network topology and performs attacks by multiple
logins until access is gained to a server with high value. In
this case, an attacker does not only creates logins that go
through edges that valid users have already gone through
but also uses a set of credentials in a login, only if its
authorized user has recently logged in to the source machine.

3654

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

Table 5: A comparative experiment showing the performance of Euler [31] and GraphSAGE [72] in detecting LM using
authentication logs across the LANL dataset (red teaming and the generated three attack scenarios). Our proposed model
Jbeil is superior across all the attacks.

Reasoning Transductive InductiveNet. Auth. Attacks Approach Euler GCN-GRU Euler GCN-LSTM Euler SAGE-LSTM Euler GAT-None Jbeil GraphSAGE Jbeil

LANL - redteam AUC 96.96 98.49 95.95 91.47 99.31 76.77 99.73

LANL - Scenario 1 AUC 58.60 41.67 36.87 47.37 98.59 69.86 99.61

LANL - Scenario 2 AUC 59.96 58.68 55.70 51.98 98.76 72.54 99.60

LANL - Scenario 3 AUC 63.84 66.63 60.29 58.44 98.53 72.14 99.54

The attack framework produced 500 of these attacks and
incorporated them into the LANL dataset. We split such
obtained dataset (of the three attack scenarios) into three
equal parts to show how the LM attacks have evolved over
time. Figure 6 demonstrates the progression of the generated
LM attacks throughout time. In Scenario 1, the number of
nodes at time t1 comprises 55, at time t2 involves 115, and
at time t3 encompasses 160. In Scenario 2, the number of
nodes is 59 at time t1, 101 at time t2, and 151 at time t3.
In Scenario 3, the number of nodes at time t1, t2, t3 is 53,
85, and 120, respectively.

After merging the obtained malicious data with the orig-
inal LANL dataset, we train Jbeil to evaluate its ability
to detect these new threats. Table 4 summarizes the results
of Jbeil when applied to the LANL dataset in order to
infer the newly embedded LM attacks of the three different
scenarios. We conduct three experiments pertained to the
three different attack scenarios; training Jbeil on 9,886
visible nodes while performing transductive testing on 1,041
visible test samples. As such Jbeil successfully detects the
three scenarios with AUC scores of 99.66%, 99.54%, and
99.54%, respectively. Additionally, we test Jbeil on 4,683
inductive nodes (which have never been seen during the
training phase). Similar to the results achieved on the seen
nodes, Jbeil successfully detects LM paths associated
with attack scenarios 1, 2, and 3 with AUC scores of
99.61%, 99.60%, and 99.54%, respectively.

4.4.3. Jbeil’s Efficiency and Scalability: inductive and
transductive training and inference benchmark. Jbeil
was designed with practicality and scalability in mind.
To validate such an assumption, we benchmarked its time
comlexity during both inductive and transductive training
under various networks. Specifically, we induce multiple
subgraphs using the LANL dataset with different number of
nodes and edges and evaluate the time required for Jbeil
to train upon. Figure 7 shows that Jbeil’s training time
complexity is highly correlated with the number of edges
ans nodes. For instance, in the transductive case when the
number of nodes is 14.9K and the number of edges is
34M the time complexity is very high; reaching 5,054
seconds with memory usage of 6GB. This clearly exhibits
the implications of transductive reasoning when faced with
significant number of nodes and edges in large enterprise
network. On the other hand, in an inductive case where part
of the nodes and edges are masked, for instance when the
number of nodes is 9.9K and the number of edges is 2.1M,

~9.9K
~10.1K

~12.2K
~13.4K ~13.9K ~14.5K ~14.9K

~2.1M
~3.5M

~7M
~14M

~21M

~28M

~34M

0

2000

4000

6000

8000

10000

12000

14000

16000

1.0e+06
5.0e+06
9.0e+06
1.3e+07
1.7e+07
2.1e+07
2.5e+07
2.9e+07
3.3e+07
3.7e+07
4.1e+07
4.5e+07
4.9e+07

250 500
1000

2000
3000

4000
5000

Time (seconds)

Tr
ai

ni
ng

 n
od

es
 in

 m
em

or
y # Training edges in m

em
ory

Edges Nodes

Figure 7: Time complexity of Jbeil on different sub-
graphs/subnets with a various number of nodes and edges.

the time complexity is much less, scoring 303 seconds
with a memory usage of 1.5GB. This reflects on the pivotal
importance of Jbeil’s inductive reasoning in ensuring
perfect results (recall Tables 2 and 4) while guarantying
scalability and efficiency.

After conducting numerous experiments, we have ob-
served that the LM inference time for Jbeil varies de-
pending on the size of the graph (nodes and edge). During
evaluation of both seen and unseen nodes and edges, we
have found that the inference time ranges from 12 seconds
for a graph with 1 million edges, to 5 minutes and 45
seconds for a graph with 30 million edges. To this end,
we note that Jbeil in-light of large and dynamic net-
works is scalable and efficient when computing resources
are minimal, training and response time is bounded, and/or
intelligence processing is sparse.

4.4.4. Jbeil’s Comparisons against State-Of-The-Art.
Firstly, Jbeil is contrasted with Euler [31], the state-of-
the-art transductive graph-based approach for LM detection.
Initially, we obtained Euler’s source code and successfully
compiled four different variants of it to test its efficacy in de-
tecting LM paths. In these experiments, we evaluate Euler
with the LANL red team attacks, as well as the three attack
scenarios that the attack framework have produced. Table 5
summarizes the results of Euler’s variations [31] in detect-
ing such attacks. sEuler performed quite well in detecting
the red team attacks with an AUC of 96.96% (Euler’s
GCN-GRU variation); this is the exact same result that
the authors have previously reported under such settings.
Nevertheless, Euler failed to detect the three generated LM
scenarios with scores as low as 36.87% for Scenario 1 and

3655

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

Table 6: An ablation study on the temporal representation
of edges in Jbeil.

Approach Time Representation Performance (AUC %)
Jbeil Continuous Time 99.31

Jbeil (modified) Static Time 69.92

Euler Discrete Time 98.49

55.70% for Scenario 2. Jbeil outperformed Euler across
the entire set of attacks. We attribute Euler’s low detection
rate when executed on the three LM attack scenarios due to
the fact that it only learns on a fixed discrete time-dynamic
graph (i.e., snapshots of graphs) using benign data. Thus,
the model does not fully comprehend the semantics of the
attacks. In addition, Euler does not add entity features but
solely looks at the node and its interactions.

Secondly, we conducted a comparative analysis with
GraphSAGE [72], a well-known method for inductive rea-
soning in large graphs. Although GraphSAGE is not tailored
for LM detection and cybersecurity, we made use of PyG’s
GraphSAGE implementation [73], [74], which allowed us
to fully implement it and perform a comprehensive compar-
ison. We found that while GraphSAGE has proven effective
for graph-based machine learning, its lack of capability to
incorporate temporal aspects or account for the continuous
time-dynamic nature of graphs, along with the absence of
cybersecurity data augmentation, pose significant challenges
in practical security applications such as LM detection.
These limitations are reflected in the results presented in
Table 5, which demonstrate GraphSAGE’s inferior perfor-
mance in the four different scenarios in contrast to the
superior performance of Jbeil.

Differently, one of the most significant contributions
of Jbeil lies in its innovative continuous temporal rep-
resentation. In comparison to alternative temporal repre-
sentations such as static time or discrete time-dynamic,
Jbeil’s continuous time-dynamic capabilities have proven
to be especially advantageous. To evaluate the effective-
ness of Jbeil’s temporal representation, we conducted
experiments to compare the performance of a variant of
Jbeil without the temporal aspect. Our results, presented
in Table 6, demonstrate the clear superiority of Jbeil’s
continuous time-dynamic representation over static time rep-
resentation. Furthermore, we have found that Jbeil out-
performs Euler’s discrete time-dynamic approach, further
supporting the strength of Jbeil’s temporal representation.

4.5. Jbeil’s Potential Real-World Integration

The task of inferring LM in large enterprise networks
is complex and challenging for existing SIEM and Network
Detection and Response (NDR) systems. However, integrat-
ing Jbeil into these systems can enhance security data
through advanced LM detection, leading to better collab-
oration, automation, threat analysis, incident response, and
mitigation capabilities. This can be achieved using modules
such as Google Cloud Pub/Sub [75], Syslog, or Logstash

[76] to collect and relay Jbeil-generated security logs to
other third-party security solutions.

5. Related Work

Existing graph-based methods for LM and APT de-
tection. Recently, King and Huang proposed ,Euler [31],
a state-of-the-art discrete-time dynamic graph neural net-
work that enables scalable dynamic link prediction. Euler
was tested with the LANL dataset with the objective of
detecting lateral movement during APT campaigns. Other
works, such as ShadeWatcher [33], Depcomm [34],
Threatrace [35], and APT-KGL [36] employed graph-
based methods including graph-based recommendation sys-
tems, graph summarizing, GraphSAGE, and heterogeneous
provenance graphs in an effort to assist host-based APT
summarizing, detection, and tracing.

Graph-related advancements, challenges, and oppor-
tunities. Significant progress has been made in addressing
the challenges associated with using graphs for node clas-
sification, link prediction, and clustering. Important contri-
butions in this field include: (i) node2vec [77] by Grover
and Leskovec, which presents an algorithmic framework for
learning continuous feature representations for nodes in net-
works, (ii) Deepwalk by Perozzi et al. [78], which provides
a scalable approach for learning latent representations of
vertices in a network, and (iii) Graph Factorization
(GF) by Ahmed et al. [79], which proposes a frame-
work for large-scale graph decomposition and inference
that partitions a graph over multiple systems where each
partition reduces the number of neighboring nodes. Despite
the promising results and advancements, graph-based tech-
niques used in cyber security still have limitations, includ-
ing constraints in reasoning and inadequate representation
of dynamic environments, which fail to accurately model
large enterprise networks. Our approach, Jbeil, uses TGN, a
deep learning framework that operates on continuous-time
dynamic graphs and ensures generalizability on unseen data
points using inductive-based learning.

6. Conclusion

In this work, we propose Jbeil, a temporal graph-
based approach for detecting LM in enterprise networks
using time-stamped authentication logs. Jbeil’s encoder
aggregates neighboring node memories to compute temporal
node embeddings, which are used by the decoder for LM
link prediction. Our experiments show Jbeil’s inductive
capabilities in predicting LM paths with an AUC score of
99.73% when 30% of the dataset is masked. Jbeil also de-
tects LM paths regardless of node visibility and quantity and
outperforms state-of-the-art work in predicting LM paths
for realistic attacks. We solidly proved the efficiency and
scalability of Jbeil and factually discussed its potential
integration with existing security solutions. In future work,
we plan on exploring Jbeil’s potential for detecting other
types of attacks and malicious activities by analyzing host-
based data and logs.

3656

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

Acknowledgments

The authors would like to thank the Program Committee,
anonymous reviewers, and the shepherd for their valuable
feedback and suggestions that significantly improved the
quality of this paper. We also acknowledge funding from
the National Science Foundation (NSF) under grant numbers
#2230086 and #2219772.

References

[1] M. Albanese, S. Jajodia, and S. Noel, “Time-efficient and cost-
effective network hardening using attack graphs,” in IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks (DSN
2012). IEEE, 2012, pp. 1–12.

[2] S. Jha, O. Sheyner, and J. Wing, “Two formal analyses of attack
graphs,” in Proceedings 15th IEEE Computer Security Foundations
Workshop. CSFW-15. IEEE, 2002, pp. 49–63.

[3] X. Ou, W. F. Boyer, and M. A. McQueen, “A scalable approach to
attack graph generation,” in Proceedings of the 13th ACM conference
on Computer and communications security, 2006, pp. 336–345.

[4] J. Homer, X. Ou, and M. A. McQueen, “From attack graphs to au-
tomated configuration management—an iterative approach,” Kansas
State University Technical Report, 2008.

[5] R. E. Sawilla and X. Ou, “Identifying critical attack assets in de-
pendency attack graphs,” in European Symposium on Research in
Computer Security. Springer, 2008, pp. 18–34.

[6] H. Huang, S. Zhang, X. Ou, A. Prakash, and K. Sakallah, “Dis-
tilling critical attack graph surface iteratively through minimum-cost
sat solving,” in Proceedings of the 27th Annual Computer Security
Applications Conference, 2011, pp. 31–40.

[7] J. Lee, H. Lee, and H. P. In, “Scalable attack graph for risk assess-
ment,” in 2009 International Conference on Information Networking.
IEEE, 2009, pp. 1–5.

[8] B. M. Bowen, S. Hershkop, A. D. Keromytis, and S. J. Stolfo,
“Baiting inside attackers using decoy documents,” in International
Conference on Security and Privacy in Communication Systems.
Springer, 2009, pp. 51–70.

[9] E. Bou-Harb, M. Debbabi, and C. Assi, “Cyber scanning: a compre-
hensive survey,” Ieee communications surveys & tutorials, vol. 16,
no. 3, pp. 1496–1519, 2013.

[10] ——, “On fingerprinting probing activities,” computers & security,
vol. 43, pp. 35–48, 2014.

[11] ——, “A statistical approach for fingerprinting probing activities,”
in 2013 International Conference on Availability, Reliability and
Security. IEEE, 2013, pp. 21–30.

[12] C. Fachkha, E. Bou-Harb, and M. Debbabi, “Inferring distributed
reflection denial of service attacks from darknet,” Computer Commu-
nications, vol. 62, pp. 59–71, 2015.

[13] E. Bou-Harb, N.-E. Lakhdari, H. Binsalleeh, and M. Debbabi, “Mul-
tidimensional investigation of source port 0 probing,” Digital Inves-
tigation, vol. 11, pp. S114–S123, 2014.

[14] C. Fachkha, E. Bou-Harb, A. Keliris, N. D. Memon, and M. Ahamad,
“Internet-scale probing of cps: Inference, characterization and orches-
tration analysis.” in NDSS, 2017.

[15] J. Khoury, M. Safaei Pour, and E. Bou-Harb, “A near real-time
scheme for collecting and analyzing iot malware artifacts at scale,”
in Proceedings of the 17th International Conference on Availability,
Reliability and Security, 2022, pp. 1–11.

[16] M. S. Pour, J. Khoury, and E. Bou-Harb, “Honeycomb: A darknet-
centric proactive deception technique for curating iot malware foren-
sic artifacts,” in NOMS 2022-2022 IEEE/IFIP Network Operations
and Management Symposium. IEEE, 2022, pp. 1–9.

[17] V. Rammouz, J. Khoury, . Klisura, M. S. Pour, M. S. Pour,
C. Fachkha, and E. Bou-Harb, “Helium-based iot devices: Threat
analysis and internet-scale exploitations,” in 2023 19th International
Conference on Wireless and Mobile Computing, Networking and
Communications (WiMob). IEEE, 2023, pp. 206–211.

[18] T. Bai, H. Bian, M. A. Salahuddin, A. Abou Daya, N. Limam, and
R. Boutaba, “Rdp-based lateral movement detection using machine
learning,” Computer communications, vol. 165, pp. 9–19, 2021.

[19] G. D. L. T. Parra, P. Rad, and K.-K. R. Choo, “Implementation of
deep packet inspection in smart grids and industrial internet of things:
Challenges and opportunities,” Journal of Network and Computer
Applications, vol. 135, pp. 32–46, 2019.

[20] G. D. L. T. Parra, P. Rad, K.-K. R. Choo, and N. Beebe, “Detecting
internet of things attacks using distributed deep learning,” Journal of
Network and Computer Applications, vol. 163, p. 102662, 2020.

[21] G. D. L. T. Parra, L. Selvera, J. Khoury, H. Irizarry, E. Bou-Harb,
and P. Rad, “Interpretable federated transformer log learning for cloud
threat forensics,” Network and Distributed Systems Security (NDSS)
Symposium 2022, 2022.

[22] M. A. Noureddine, A. Fawaz, W. H. Sanders, and T. Başar, “A
game-theoretic approach to respond to attacker lateral movement,” in
International Conference on Decision and Game Theory for Security.
Springer, 2016, pp. 294–313.

[23] J. Khoury and M. Nassar, “A hybrid game theory and reinforcement
learning approach for cyber-physical systems security,” in NOMS
2020-2020 IEEE/IFIP Network Operations and Management Sym-
posium. IEEE, 2020, pp. 1–9.

[24] M. Nassar, J. Khoury, A. Erradi, and E. Bou-Harb, “Game theoretical
model for cybersecurity risk assessment of industrial control systems,”
in 2021 11th IFIP International Conference on New Technologies,
Mobility and Security (NTMS). IEEE, 2021, pp. 1–7.

[25] G. Ho, M. Dhiman, D. Akhawe, V. Paxson, S. Savage, G. M. Voelker,
and D. Wagner, “Hopper: Modeling and detecting lateral movement,”
in 30th USENIX Security Symposium (USENIX Security 21), 2021,
pp. 3093–3110.

[26] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakr-
ishnan, “Holmes: real-time apt detection through correlation of suspi-
cious information flows,” in 2019 IEEE Symposium on Security and
Privacy (SP). IEEE, 2019, pp. 1137–1152.

[27] C. Xiong, T. Zhu, W. Dong, L. Ruan, R. Yang, Y. Chen, Y. Cheng,
S. Cheng, and X. Chen, “Conan: A practical real-time apt detection
system with high accuracy and efficiency,” IEEE Transactions on
Dependable and Secure Computing, 2020.

[28] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn:
Runtime provenance-based detector for advanced persistent threats,”
arXiv preprint arXiv:2001.01525, 2020.

[29] G. Apruzzese, F. Pierazzi, M. Colajanni, and M. Marchetti, “Detection
and threat prioritization of pivoting attacks in large networks,” IEEE
Transactions on Emerging Topics in Computing, 2017.

[30] B. Bowman, C. Laprade, Y. Ji, and H. H. Huang, “Detecting lateral
movement in enterprise computer networks with unsupervised graph
{AI},” in 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), 2020, pp. 257–268.

[31] I. J. King and H. H. Huang, “Euler: Detecting network lateral move-
ment via scalable temporal link prediction,” Network and Distributed
Systems Security (NDSS) Symposium 2022, 2022.

[32] R. Paudel and H. H. Huang, “Pikachu: Temporal walk based dynamic
graph embedding for network anomaly detection,” in NOMS 2022-
2022 IEEE/IFIP Network Operations and Management Symposium.
IEEE, 2022, pp. 1–7.

[33] J. Zeng, X. Wang, J. Liu, Y. Chen, Z. Liang, T.-S. Chua, and Z. L.
Chua, “Shadewatcher: Recommendation-guided cyber threat analysis
using system audit records,” in 2022 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society, 2022, pp. 1567–1567.

3657

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

[34] Z. Xu, P. Fang, C. Liu, X. Xiao, Y. Wen, and D. Meng, “Depcomm:
Graph summarization on system audit logs for attack investigation,”
in 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 2022,
pp. 540–557.

[35] S. Wang, Z. Wang, T. Zhou, H. Sun, X. Yin, D. Han, H. Zhang, X. Shi,
and J. Yang, “Threatrace: Detecting and tracing host-based threats in
node level through provenance graph learning,” IEEE Transactions on
Information Forensics and Security, vol. 17, pp. 3972–3987, 2022.

[36] T. Chen, C. Dong, M. Lv, Q. Song, H. Liu, T. Zhu, K. Xu, L. Chen,
S. Ji, and Y. Fan, “Apt-kgl: An intelligent apt detection system based
on threat knowledge and heterogeneous provenance graph learning,”
IEEE Transactions on Dependable and Secure Computing, 2022.

[37] H. He, Y. Ji, and H. H. Huang, “Illuminati: Towards explaining
graph neural networks for cybersecurity analysis,” in 2022 IEEE 7th
European Symposium on Security and Privacy (EuroS&P). IEEE,
2022, pp. 74–89.

[38] D. Arp, E. Quiring, F. Pendlebury, A. Warnecke, F. Pierazzi,
C. Wressnegger, L. Cavallaro, and K. Rieck, “Dos and don’ts of
machine learning in computer security,” in 31st USENIX Security
Symposium (USENIX Security 22), 2022, pp. 3971–3988.

[39] F. Maggi, W. Robertson, C. Kruegel, and G. Vigna, “Protecting a
moving target: Addressing web application concept drift,” in Re-
cent Advances in Intrusion Detection: 12th International Symposium,
RAID 2009, Saint-Malo, France, September 23-25, 2009. Proceedings
12. Springer, 2009, pp. 21–40.

[40] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, L. Cavallaro et al.,
“Tesseract: Eliminating experimental bias in malware classification
across space and time,” in Proceedings of the 28th USENIX Security
Symposium. USENIX Association, 2019, pp. 729–746.

[41] R. Coulter, J. Zhang, L. Pan, and Y. Xiang, “Domain adaptation for
windows advanced persistent threat detection,” Computers & Security,
vol. 112, p. 102496, 2022.

[42] J. Khoury, “Jbeil source code,” 2023. [Online]. Available: https:
//github.com/LMscope/Jbeil

[43] TrendMicro, “Cyberattack lateral movement explained,” 2019.
[Online]. Available: https://www.trendmicro.com/en us/research/19/
h/cyberattack-lateral-movement-explained.html

[44] CrowdStrike, “Lateral movement,” 2022. [Online]. Available:
https://www.crowdstrike.com/cybersecurity-101/lateral-movement/

[45] Mitre, “Initial access,” 2019. [Online]. Available: https://attack.mitre.
org/tactics/TA0001/

[46] Strongdm, “11 authentication-based vulnerabilities you need to
know,” 2022. [Online]. Available: https://www.strongdm.com/blog/
authentication-vulnerabilities

[47] Mitre, “Credential access,” 2019. [Online]. Available: https:
//attack.mitre.org/tactics/TA0006/

[48] ——, “Modify authentication process,” 2022. [Online]. Available:
https://attack.mitre.org/techniques/T1556/

[49] ——, “Brute force,” 2022. [Online]. Available: https://attack.mitre.
org/techniques/T1110/

[50] ——, “Forced authentication,” 2020. [Online]. Available: https:
//attack.mitre.org/techniques/T1187/

[51] ——, “Multi-factor authentication interception,” 2022. [Online].
Available: https://attack.mitre.org/techniques/T1111/

[52] ——, “Os credential dumping,” 2022. [Online]. Available: https:
//attack.mitre.org/techniques/T1003/

[53] ——, “Account manipulation,” 2022. [Online]. Available: https:
//attack.mitre.org/techniques/T1098/

[54] ——, “Use alternate authentication material: Pass the ticket,” 2021.
[Online]. Available: https://attack.mitre.org/techniques/T1550/003/

[55] H. Bian, T. Bai, M. A. Salahuddin, N. Limam, A. Abou Daya, and
R. Boutaba, “Uncovering lateral movement using authentication logs,”
IEEE Transactions on Network and Service Management, vol. 18,
no. 1, pp. 1049–1063, 2021.

[56] D. Liben-Nowell and J. Kleinberg, “The link-prediction problem for
social networks,” Journal of the American Society for Information
Science and Technology, vol. 58, no. 7, pp. 1019–1031, 2007.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/
asi.20591

[57] C. Bhagavatula, S. Feldman, R. Power, and W. Ammar, “Content-
based citation recommendation,” in Proceedings of the 2018
Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers). New Orleans, Louisiana: Association
for Computational Linguistics, Jun. 2018, pp. 238–251. [Online].
Available: https://aclanthology.org/N18-1022

[58] S. M. Kazemi and D. Poole, “Simple embedding for link prediction
in knowledge graphs,” in Advances in Neural Information Processing
Systems, S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, Eds., vol. 31. Curran Associates,
Inc., 2018. [Online]. Available: https://proceedings.neurips.cc/paper/
2018/file/b2ab001909a8a6f04b51920306046ce5-Paper.pdf

[59] P. Xu, W. Hu, J. Wu, and B. Du, “Link prediction with signed latent
factors in signed social networks,” in Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery &
Data Mining, ser. KDD ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 1046–1054. [Online]. Available:
https://doi.org/10.1145/3292500.3330850

[60] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning
Representations (ICLR), 2017.

[61] ——, “Variational graph auto-encoders,” NIPS Workshop on Bayesian
Deep Learning, 2016.

[62] M. Zhang and Y. Chen, “Link prediction based on graph neural
networks,” in Advances in Neural Information Processing Systems,
2018, pp. 5165–5175.

[63] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Advances in Neural Information
Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran As-
sociates, Inc., 2017. [Online]. Available: https://proceedings.neurips.
cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf

[64] A. Bojchevski and S. Günnemann, “Deep gaussian embedding
of graphs: Unsupervised inductive learning via ranking,” in 6th
International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference
Track Proceedings. OpenReview.net, 2018. [Online]. Available:
https://openreview.net/forum?id=r1ZdKJ-0W

[65] Y. Hao, X. Cao, Y. Fang, X. Xie, and S. Wang, “Inductive
link prediction for nodes having only attribute information,” in
Proceedings of the Twenty-Ninth International Joint Conference
on Artificial Intelligence, IJCAI-20, C. Bessiere, Ed. International
Joint Conferences on Artificial Intelligence Organization, 7 2020,
pp. 1209–1215, main track. [Online]. Available: https://doi.org/10.
24963/ijcai.2020/168

[66] H. Bian, T. Bai, M. A. Salahuddin, N. Limam, A. Abou Daya,
and R. Boutaba, “Technical report,” 2020. [Online]. Available:
http://bit.ly/tech report 2020

[67] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and
M. Bronstein, “Temporal graph networks for deep learning on dy-
namic graphs,” arXiv preprint arXiv:2006.10637, 2020.

[68] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation
of gated recurrent neural networks on sequence modeling,” arXiv
preprint arXiv:1412.3555, 2014.

3658

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

[69] D. Y. Hancock, J. Fischer, J. M. Lowe, W. Snapp-Childs, M. Pierce,
S. Marru, J. E. Coulter, M. Vaughn, B. Beck, N. Merchant et al.,
“Jetstream2: Accelerating cloud computing via jetstream,” in Practice
and Experience in Advanced Research Computing, 2021, pp. 1–8.

[70] A. D. Kent, “Comprehensive, Multi-Source Cyber-Security Events,”
Los Alamos National Laboratory, 2015.

[71] grantho, “lateral-movement-simulator,” 2023. [Online]. Available:
https://github.com/grantho/lateral-movement-simulator

[72] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Advances in neural information processing
systems, vol. 30, 2017.

[73] PyG, “Pyg is the ultimate library for graph neural networks,” 2023.
[Online]. Available: https://pyg.org

[74] ——, “models.graphsage,” 2023. [Online]. Avail-
able: https://pytorch-geometric.readthedocs.io/en/latest/generated/
torch geometric.nn.models.GraphSAGE.html

[75] Google, “Pub/sub,” 2023. [Online]. Available: https://cloud.google.
com/pubsub

[76] Elastic, “Logstash,” 2023. [Online]. Available: https://www.elastic.
co/logstash/

[77] A. Grover and J. Leskovec, “node2vec: Scalable feature learning for
networks,” in Proceedings of the 22nd ACM SIGKDD international
conference on Knowledge discovery and data mining, 2016, pp. 855–
864.

[78] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk: Online learning
of social representations,” in Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining,
2014, pp. 701–710.

[79] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and
A. J. Smola, “Distributed large-scale natural graph factorization,” in
Proceedings of the 22nd international conference on World Wide Web,
2013, pp. 37–48.

3659

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

Appendix A.
Meta-Review

A.1. Summary

The paper addresses the critical challenge of detecting
lateral movement (LM) within enterprise networks. The au-
thors propose a novel approach that uses dynamic temporal
graph networks, inductive learning, and a threat sample
augmentation approach to detect LM attacks from authen-
tication logs. Their proposed system, Jbeil, demonstrates
superior performance over traditional detection methods and
promises to detect previously unseen attacks, marking a
significant step forward in network defense.

A.2. Scientific Contributions

• Addresses a Long-Known Issue
• Provides a Valuable Step Forward in an Established

Field
• Creates a New Tool to Enable Future Science

A.3. Reasons for Acceptance

1) The problem of detecting lateral movements in
enterprise networks is a critical issue in cybersecu-
rity. The paper offers a promising solution to this
challenge.

2) The use of an inductive learning approach and the
integration of dynamic temporal graph networks
represents a significant methodological innovation.

3) The proposed system, Jbeil, exhibits improved
detection accuracy compared to existing systems,
particularly in scenarios involving unseen nodes.

A.4. Noteworthy Concerns

The paper doesn’t discuss the system’s efficiency and
scalability, which are critical for practical deployments in
large-scale networks. Providing information about the com-
putational resources required and how well the system scales
would provide a more comprehensive understanding of the
tool’s applicability.

Appendix B.
Response to the Meta-Review

Regarding the discussion of the system’s efficiency and
scalability, we have conducted additional experiments in
which we examined Jbeil’s inference time according to
various number of edges. We have revised Section 4.4.4
to showcase the efficiency and scalability of Jbeil while
presenting insights on its inference time.

3660

Authorized licensed use limited to: IEEE Xplore. Downloaded on August 07,2025 at 04:39:47 UTC from IEEE Xplore. Restrictions apply.

