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Abstract 

Polygenic score (PGS) is an important tool for the genetic prediction of comple x traits. Ho w e v er, there are currently no resources pro viding 
comprehensive PGSs computed from published summary statistics, and it is difficult to implement and run different PGS methods due to 
the complexity of their pipelines and parameter settings. To address these issues, we introduce a new resource called PGS-Depot containing 
the most comprehensive set of publicly a v ailable disease-related GWAS summary statistics. PGS-Depot includes 5585 high quality summary 
st atistics (1933 quantit ative and 3652 binary trait statistics) curated from 1564 traits in European and East Asian populations. A standardized 
best-practice pipeline is used to implement 11 summary statistics-based PGS methods, each with different model assumptions and estimation 
procedures. T he prediction perf ormance of each method can be compared for both in- and cross-ancestry populations, and users can also 
submit their own summary statistics to obtain custom PGS with the a v ailable methods. Other features include searching for PGSs by trait name, 
publication, cohort information, population, or the MeSH ontology tree and searching for trait descriptions with the e xperimental f actor ontology 
(EFO). All scores, SNP effect sizes and summary statistics can be downloaded via FTP. PGS-Depot is freely a v ailable at http://www.pgsdepot.net . 
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ntroduction 

omplex traits, such as cardiovascular disease ( 1 ), psychiatric
isorders ( 2 ), and different types of cancers ( 3 ) do not follow
imple Mendelian inheritance laws. Accurate genetic predic-
ion of complex disease may facilitate population-scale risk
tratification and improve early-stage diagnosis and interven-
ion ( 4–6 ). Polygenic score (PGS), which is a weighted sum-
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mation of the estimated effect sizes of single nucleotide poly-
morphisms (SNPs) across the whole genome, is a common
measurement for the prediction of complex traits from geno-
type data ( 7 ). PGS is commonly called polygenic risk score
(PRS) or genetic risk score (GRS) when the trait of interest
is a binary trait of disease status. After proposed by Purcell
et al., PGS has been extensively employed for disease risk
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stratification and precision clinical decision ( 8 ). Currently,
most PGSs are constructed using European populations
(EUR), but their transferability to other population groups,
such as East Asian (EAS), South Asian, or African (AFR), is
also an important application which is limited by reduced ac-
curacy ( 9 ,10 ). This loss of prediction performance when EUR
models are directly applied to different ancestries might be
caused by genetic differences such as linkage disequilibrium
(LD), allele frequencies, and / or variations in genetic archi-
tecture between populations ( 11 ,12 ). Biobank-scale data such
as UK Biobank (UKBB), Biobank of Japan (BBJ) and China
Kadoorie Biobank (CKB), include a large number of individ-
uals (i.e. sample size larger than 500 000), which improves
the power of downstream genome-wide association studies
(GWAS) and therefore the prediction performance of PGS
( 13–16 ). The recent availability of biobanks focusing on non-
European individuals has paved the way for the evaluation
of PGS prediction accuracy on both in-ancestry and cross-
ancestry populations ( 17 ). 

The prediction performance of PGS depends strongly on
the assumptions made regarding the distribution of SNP effect
sizes ( 18 ). In addition, GWAS summary statistics (i.e. variant,
effect size, standard error and P -value for a specific trait) are
more commonly available than individual-level data ( 19 ,20 ).
Given these two points, many PGS methods utilizing summary
statistics have been proposed, which assume different distribu-
tions of SNP effect sizes (i.e. polygenic or sparse) and / or differ-
ent statistical inference strategies (i.e. frequentist or Bayesian).
Polygenic methods assume that all SNPs have non-zero effects
and follow a specific distribution such as the normal distribu-
tion ( 21–24 ). Meanwhile, sparse methods assume that only a
small proportion of SNPs have non-zero effects ( 21 ). As differ-
ent traits have different genetic architectures, no single mod-
eling assumption is suitable for all traits. This motivates the
need for a comprehensive database for cataloging and evalu-
ating the scores, prediction performance and transferability of
multiple PGS methods. 

To date, there exist multiple open-access databases for
GWAS summary statistics, including the NHGRI-EBI GWAS
Catalog ( 25 ), OpenGWAS ( 26 ) and GWAS Central ( 27 ). On
the other hand, PGS Catalog is the only PGS database cur-
rently available which only supports the four methods of
clumping and threshold (CT), LDpred, PRSice2 and meta-
GRS for 619 traits ( 28 ). The limited number of traits and
PGS methods publicly available may hinder the utility of PGS
and GWAS to epidemiologists, physicians and geneticists. To
address these limitations, we propose PGS-Depot as a com-
prehensive resource that implements 11 summary statistics-
based PGS methods for 1564 complex traits. The performance
of each method is evaluated using Pearson R 

2 or area un-
der curve (AUC), and the prediction performance for both
in-ancestry and cross-ancestry populations is estimated. PGS-
Depot is an open access resource which is freely available at
http://www.pgsdepot.net . 

Materials and methods 

Summary statistics curation 

PGS-Depot contains 5585 high quality summary statistics di-
vided between 1933 statistics for quantitative traits and 3652
for binary traits, which have been curated from 1564 traits in
both EUR and EAS populations (Figure 1 ). To guarantee the
availability, validity and accuracy of PGS in the database, we 
retained those summary statistics: (i) with a sample size larger 
than 2000; (ii) whose traits are recorded in UKBB; (iii) whose 
covariates and stratification variables are also measured in 

UKBB and (iv) with a missing rate of less than 50% in UKBB.
For binary traits, we additionally restricted traits to those with 

a case-control ratio higher than 1:500. We divided these sum- 
mary statistics into three categories according to their data 
source: (i) non-UKBB EUR cohort; (ii) UKBB cohort and (iii) 
BBJ cohort. For summary statistics that do not include a mi- 
nor allele frequency (MAF), we directly used the MAF of the 
corresponding ancestry group in the 1000 Genomes Project 
(1000GP). 

PGS methods 

PGS models vary based on their model assumptions. The pre- 
diction efficacy of different PGS models depends on the con- 
gruence between the model’s effect size assumptions and the 
trait’s genetic architecture. Based on different distribution as- 
sumption of effect size, we classified the methods into three 
categories: non-model-based, polygenic and sparse methods.
Therefore, PGS-Depot encompasses scores constructed using 
11 methods with different model assumptions detailed in Sup- 
plementary Table S1. Non-model-based methods such as CT 

and SCT employ independent SNPs with large effect size with- 
out making prior assumptions about the effect sizes. We di- 
vided polygenic methods into two subcategories: infinitesimal 
models like DBSLMM-lmm, LDpred2-inf and SBLUP (assum- 
ing a uniform variance across all SNP effect sizes conform- 
ing to a normal distribution), and others like DBSLMM-auto,
PRS-CS, LDpred2-auto and LDpred2-nosp (where each effect 
size follows a normal distribution within its unique variance).
Sparse methods like LDpred2-sp assume that only a small 
fraction of SNPs is associated with the trait. 

Different model assumptions necessitate varying dataset re- 
quirements for each method. Specifically, some methods re- 
quire only a reference panel, while others demand both a 
reference panel and a validation set. For our analysis, we 
used six different methods: DBSLMM-auto, DBSLMM-lmm,
LDpred2-auto, LDpred2-inf, SBLUP and PRS-CS. These were 
fitted using summary statistics derived from a specific popu- 
lation alongside a reference panel corresponding to the same 
population. We used the genotypes from 1000GP as a refer- 
ence panel, which contains 503 EUR and 504 EAS individu- 
als. These six methods utilize block-diagonal LD matrices to 

reduce computational cost with three different strategies: (i) 
DBSLMM and PRS-CS construct a block-diagonal LD ma- 
trix following ( 29 ); (ii) SBLUP fixes the LD window size to 

1Mb; and (iii) LDpred2 sets the LD window size to 3cM. For 
the remaining methods, we additionally used a validation set 
to select optimal parameter settings. Specifically, to reduce the 
computational burden, we used the reference panel to estimate 
SNP effect sizes and used the validation set to select the best 
parameters. The details of the parameter settings and inputs 
for the 11 methods are shown below. 

For CT, we selected three hyper-parameters from among 
2800 possible combinations, which are drawn from 50 P - 
value thresholds, four window sizes (50, 100, 200 and 500 

kb), and seven R 

2 values (0.01, 0.05, 0.1, 0.2, 0.5, 0.8 and 

0.9). SCT extends CT by fitting a penalized regression. To re- 
duce computational costs, we fitted four LDpred2 models sep- 
arately to each chromosome. LDpred2-inf uses a closed-form 

http://www.pgsdepot.net
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Figure 1. An o v ervie w of PGS-Depot. (A) The pipeline of PGS-Depot, including data source, data processing and output. First, we performed quality 
control for the collected summary statistics. We kept only 5585 summary statistics consisting of both quantitative and binary traits. Second, we fitted 
models for 11 PGS methods. 50 0 0 0 UKBB individuals were randomly sampled as a validation set, and the 10 0 0 Genomes Project was used as a 
reference panel. Finally, we calculated PGSs and evaluated their performance. The test set consisted of three ancestry groups from UKBB. (B) A 

w orkflo w of PGS-Depot. Users can query traits in se v en w a y s, including b y e xperimental f actor ontology (EFO) trait tree, cohort, population, target 
study, target trait name, PMID and EFO ID. Users can also upload their own summary statistics for analysis. Users can choose PGS methods based on 
their in- and / or cross-ancestry prediction performance and download results by method and population. 
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estimator to fit its LMM. For LDpred2-nosp, we tuned two
hyper-parameters by considering 21 different P -values rang-
ing from 10 

−5 to 1 on the log-scale, and three heritability
values { 0 . 7 , 1 . 0 , 1 . 4 } × h 

2 
chr . LDpred2-sp fits the same model

as LDpred2-nosp but constrains some SNP effects to zero.
Without additional validation dataset, LDpred2-auto auto-
matically infers the two hyper-parameters. For the methods
above, we used the R package bigsnpr (v. 1.12.2) to fit models.
DBSLMM classified SNPs by effect size into a group of large
effect SNPs and a group of small effect SNPs. To choose the
two hyperparameters in DBSLMM, we used a validation set to
select between three P -value thresholds (10 

−4 , 10 

−5 , or 10 

−6 )
and three heritability values { 0 . 8 , 1 . 0 , 1 . 2 } × h 

2 . On the other
hand, while DBSLMM adopts a distinct approach, DBSLMM-
auto uses window size as 1 Mb, R 

2 as 0.2, and P -value as 10 

−6

to define the large effect SNP. Unlike DBSLMM, DBSLMM-
lmm fits a linear mixed model (LMM). For the three DB-
SLMM methods, we used the DBSLMM software (v. 0.3) to
estimate effect sizes and the LD Score Regression (LDSC) soft-
ware (v. 1.0) to estimate SNP heritability ( 24 ,30 ). Using GCTA
(v. 1.94.1), SBLUP fits an LMM with heritability estimated by
LDSC. Although LDpred2-inf, DBSLMM-lmm, and SBLUP
fitting the LMM, they used different strategies to construct
LD matrix. PRS-CS places continuous shrinkage (CS) on the
SNP effect size, for which we used 1000 sampling iterations
with 500 burn-in iterations as a default. 

Quality control for UKBB cohort 

For the quality control (QC) of UKBB EUR individuals, we re-
tained individuals (i) whose genotypes were successfully mea-
sured, (ii) who are included in the genotype principal com-
ponent (PC) computation and (iii) who have a white British
ancestry for in-ancestry PGS or EAS / AFR ancestry for cross-
ancestry PGS ( 2 ,16 ) (Figure 1 ). In addition, we excluded indi-
viduals (i) who have more than 10 putative third-degree rela-
tives based on the kinship table, (ii) who have sex chromosome
aneuploidy and (iii) who are redacted and thus do not have a
corresponding ID in the phenotype data. For SNP QC, we re-
tained SNPs with a genotype calling confidence larger than
0.9. We filtered out SNPs (i) with a MAF < 0.01, (ii) with a
Hardy–Weinberg equilibrium (HWE) test P -value < 10 

−7 , (iii)
with an imputation information score < 0.8, (iv) with a pro-
portion of missingness ( P m 

) > 0.05 or (v) that are a duplicated
SNP. Following ( 5 ,22 ), to ensure scalability for all PGS meth-
ods (i.e. PRS-CS), PGS-Depot only includes about one million
SNPs in HapMap phase 3 (HM3) version ( 22 ,31 ). 

PGS for non-UKBB cohort 

PGS-Depot includes 200 summary statistics estimated without
UKBB, of which 75 summary statistics and 31 traits are quan-
titative traits, and 125 statistics and 66 traits are binary traits
(Supplementary Table S2). For these statistics, we applied all
11 PGS methods to re-estimate the effect size. As different
summary statistics were previously estimated with differing
covariates and / or stratifications, we adjusted the covariates
and / or stratified the data appropriately to match. Specifically,
for each quantitative trait, we fitted a linear regression to re-
move the effects of the top 20 genotype PCs and their corre-
sponding covariates. We transformed phenotype residuals to a
standard normal distribution through quantile-quantile trans-
formation. For each binary trait, we directly fitted a logistic
regression model for the top 20 genotype PCs and their cor-
responding covariates to obtain their effect sizes. For binary 
traits, we treated self-reported or ICD10 cases as positive and 

the remaining as negative ( 2 ,16 ). When a summary statistic 
was estimated by stratification analysis, we fitted the model 
to the corresponding stratification in the validation set. For 
example, we used a sample of 18531 females as the validation 

set for body mass index (BMI) stratified by sex. 
For Non-UKBB PGSs, we used a validation set to select the 

best parameter combination and a test set to evaluate the pre- 
diction performance of each of the 11 PGS methods. Both the 
validation and test sets were drawn from UKBB. We randomly 
selected 50 000 UKBB EUR individuals as a validation set. The 
test set consists of the remaining UKBB data with 270828 in- 
dividuals, of which there are 260 848 EUR, 6442 AFR and 

3538 EAS individuals (Supplementary Table S3). To evaluate 
in-ancestry performance, we performed 100 bootstrap sam- 
ples consisting of 5000 EUR individuals each. To evaluate 
cross-ancestry performance, due to limited sample size we per- 
formed 100 bootstrap samples with 500 AFR or EAS individ- 
uals per sample. Note that the limited number of AFR and 

EUR samples caused four of our cross-ancestry tests for bi- 
nary traits with stratified variables to fail. Specifically, due to 

the variation of sample size between the three ancestries, the 
prevalence in many binary traits was different. This imbalance 
could lead to higher cross-ancestry prediction performance in 

EAS or AFR. We evaluated the performance of all 11 methods 
using R 

2 for quantitative traits and AUC for binary traits and 

used boxplots to show the R 

2 or AUC of the 100 bootstrap 

iterations. 

PGS for UKBB cohort or BBJ cohort 

The remaining summary statistics were estimated using the 
UKBB or BBJ cohort, comprising two categories: (i) statistics 
relying solely on the two biobank-scale datasets; (ii) statistics 
that employ the two biobank-scale datasets to perform meta- 
analysis. For statistics encompassing UKBB participants, the 
UKBB validation set was omitted to mitigate potential over- 
fitting. BBJ is the largest disease biobank, recruiting 260 000 

patients representing 440 000 cases in 51 diseases ( 14 ). For the 
summary statistics estimated by BBJ participants, a distinction 

in disease prevalence was observed when compared to the EAS 
segment of the UKBB cohort. Furthermore, the limited EAS 
sample size in UKBB, totaling 3538, precluded a division into 

distinct validation and test sets. Given these constraints, our 
evaluation adopted six models: DBSLMM-auto, DBSLMM- 
lmm, LDpred2-auto, LDpred2-inf, PRS-CS and SBLUP, given 

that these models only required either a EUR or EAS reference 
panel. 

Implementation of PGS-Depot 

The back end of PGS-Depot was developed in the Java-based 

Spring Boot web framework. The front-end was developed 

with the Vue.js framework, and the user interface was built 
with the Element framework for Vue.js. A MySQL database 
is used to rapidly retrieve curated GWAS summary statistics 
and SNP effect sizes for different PGS methods. 

Results 

Design and organization of PGS-Depot 

PGS-Depot organizes and presents all results (i.e. sum- 
mary statistics and scores from all PGS methods) under the 
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Figure 2. Summary of functional modules in PGS-Depot. PGS-Depot consists of five modules: search, download, comparison, visualization and submit. 
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ebpages: PGS , Non UKBB PGS , Traits , Publications , Search,
ubmit, About and Help (Figure 2 ). On the PGS and Non
KBB PGS pages, we provide information for eleven differ-

nt properties: GWAS summary statistics ID in PGS-Depot
PDID), reported trait, experimental factor ontology (EFO)
D ( 32 ), EFO ontology trait, sample size, number of con-
rols, number of cases, population, cohort, PGS methods, and
MID. We specifically indicate the suitable methods for con-
tructing each given PGS. The Traits page lists the PDID, re-
orted trait, trait label, trait ontology ID, trait ID, popula-
ion and sample size for each trait. We also provide a pie
hart to show the proportion of traits among 26 trait cate-
ories. The Publications page presents the PMID , PMCID , ti-
le, first author, journal, year and DOI of each publication.
ogether, these pages organize PGS according to four differ-
nt aspects, and not only provide searching and sorting func-
ions but also allow the summary information for all PGSs
o be downloaded. On the Search page, we provide four op-
ions for searching by trait, population, cohort and publica-
ion. On the Submit page, we provide an interface to upload
he user’s summary statistics for analysis. Users must provide
heir email address, trait, sample size and summary statis-
tic information (i.e. SNP name, effect allele, non-effect allele,
beta and P -value). Furthermore, we’ve incorporated a ‘pri-
vate data switch’, allowing users to designate data confiden-
tiality, with an adjacent description ensuring the secure han-
dling and prompt deletion of any private data post-analysis.
For restricted datasets, such as those from the Psychiatry Ge-
nomics Consortium (PGC) ( 33–35 ), we compute the PGS,
dispatch results via email and erase the PGS and summary
statistics from our system within seven days. The About page
provides a detailed introduction to PGS-Depot, and the Help
page provides a case study showing the results presented by
PGS-Depot. 

Usage and interface of PGS-Depot 

To find PGS results, users can search from different pages
with different querying methods. Results are presented dif-
ferently between the non-UKBB cohort and UKBB / BBJ co-
hort. For the non-UKBB cohort, we provide the following in-
formation: (i) summary statistic information such as the re-
ported trait, EFO trait, population, sample size, PMID, num-
ber of cases, number of controls and link to corresponding
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publication; (ii) the EFO ID and EFO ontology; (iii) the top
100 significant SNPs; and (iv) three boxplots that compare
the in- and cross-ancestry prediction performance of the 11
PGS models. For the UKBB / BBJ cohort, we provide the first
three pieces of information. Users can download the SNP ef-
fect sizes estimated by the six PGS methods, scores for EUR,
AFR and EAS populations generated by each method, and the
corresponding summary statistics used to generate the scores.
The SNP effect size file contains three necessary pieces of in-
formation: SNP ID, effective allele and effect size, which can
be directly used with PLINK ( 36 ). 

The search interface of PGS-Depot utilizes the Elasticsearch
search engine to enable searching by PDID, trait name and
PMID. Users can also search the contents of any column (such
as publication year). Complete search results can be down-
loaded for further analysis using the download button. 

Case study: Alzheimer’s disease neuropathologic 

change (PDID: PD05427) 

We treat Alzheimer’s disease as an example to demonstrate
the usability of the resource and the information provided for
each summary statistic (Figure 3 ). First, on the Non-UKBB
Cohort or Search page, users can use the PMID, trait name,
or PDID to find the appropriate information page. On the in-
formation page, PGS-Depot provides summary information,
EFO information and results for each of the 11 implemented
PGS methods including prediction performance, FTP links for
downloading effect sizes and a summary of the most signifi-
cant SNPs. In particular, using summary statistics from 28 642
EUR individuals consisting of 16 119 cases and 12 523 con-
trols ( 37 ), we re-estimated SNP effect sizes with each of the 11
PGS methods to provide prediction scores for three ancestry
groups. This page also provides a link to directly download
the relevant summary statistics. Boxplots are provided to vi-
sualize the prediction performance of the 11 PGS methods on
each population. In this example, it is well known that the top
SNP for Alzheimer’s disease is the cis -SNP of the gene APOE
located on chromosome 19 at position q13.32 (Supplemen-
tary Table S4). 

Comparison to PGS-Catalog 

Compared to PGS-Catalog, which is the most popular PGS re-
source currently available, PGS-Depot is a more comprehen-
sive database with multiple advantages. First, PGS-Catalog
only includes 3688 scores for 619 traits, whereas PGS-Depot
has collected 34 510 scores for 1564 traits. Second, PGS-
Catalog only includes four PGS methods, whereas PGS-Depot
includes 11 methods. Third, PGS-Catalog stores scores esti-
mated from the same summary statistics using different meth-
ods on different pages, which makes it difficult to compare
methods. PGS-Depot instead displays scores from different
methods on the same page, which makes downloading scores
more user-friendly and makes selecting the best method eas-
ier. Finally, PGS-Depot provides boxplots to visualize the per-
formance of different methods on both in- and cross-ancestry
populations. 

Discussion 

With the rapid growth of GWAS summary statistics and the
increasing usage of PGS in genetic epidemiology, it is diffi-
cult for physicians to choose the best method (i.e. with re- 
gards to accuracy or transferability) for a given use case. To 

meet this need, we have developed PGS-Depot as a compre- 
hensive database for evaluating the prediction accuracy and 

transferability of PGS methods. PGS-Depot features 11 dif- 
ferent methods based on both polygenic and sparse assump- 
tions which are suited to different genetic architectures, and 

provides scores for 1564 complex traits, including both quan- 
titative and binary traits. For usability, PGS-Depot provides 
reports and visualizations for SNP effect sizes, a global search 

engine, sorting of tables by column, and FTP links for users to 

easily download PGS data. 
Although PGS-Depot has many advantages, some limita- 

tions and future directions should be addressed. First, we’ve 
included summary statistics from studies with smaller sam- 
ple sizes, particularly those with fewer than 4000 samples.
Although the sample size of these studies is not very large,
their PGS can be used in subsequent studies, especially those 
with non-overlapping samples. Second, several recent meth- 
ods have been developed for computing cross-ancestry PGS 
utilizing different strategies such as a linear combination 

of PGSs from different ancestries and / or different meth- 
ods (i.e. PRS-CSx, PolyPred and PGSagg) ( 5 , 31 , 38 ); trans- 
ferring learning to fine-tune existing models on new an- 
cestries ( 10 ); and re-estimation of effect sizes based on 

cross-ancestry genetic correlation ( 39 ). Finally, with the fast- 
growing need for cross-ancestry predictions and the emer- 
gence of non-EUR GWAS datasets, we will update PGS- 
Depot bimonthly by integrating more cross-ancestry PGS 
methods and more GWAS summary statistics in the fu- 
ture. In addition, users will be able to use these new meth- 
ods when estimating PGSs on their own uploaded summary 
statistics. 

We employed the HM3 version’s SNPs, totalling about 1 

million, to apply the 11 methods across all summary statis- 
tics. Despite using a sparser SNP setting, the predictive perfor- 
mance appears to be comparable between dense and sparse 
configurations. First, for most complex traits, common vari- 
ants contribute a larger fraction of phenotypic variance as 
compared to rare variants ( 40 ). Second, accurate effect size 
estimation is crucial to phenotype prediction. The effect sizes 
of common variants can be estimated much more accurately 
than in the case of rare variants, which results in higher 
statistical power ( 22 ). In addition, including SNPs with low 

MAF would substantially increase the number of SNPs in- 
cluded in the PGS models, leading to an extremely heavy 
computational burden for some PGS methods. For exam- 
ple, PRS-CS and LDpred2 computation becomes notably pro- 
longed when analyzing more than one million SNPs ( 5 ,27 ).
In our prior investigation of six PGS methods across 25 bi- 
nary traits, the performance improvement using a dense SNP 

set averages around 0.00%, with a range from –0.06% to 

0.07% ( 5 ). 
In summary, PGS-Depot is a comprehensive PGS resource 

that includes methods with non-model-based, sparse and 

polygenic assumptions, evaluates prediction performances on 

different ancestries, and provides SNP effect sizes in a for- 
mat directly usable in PLINK. We believe that PGS-Depot will 
greatly expand the understanding of the genetic architecture 
underlying cancer survival and other complex diseases for ge- 
neticists and physicians worldwide, further providing an im- 
portant resource for precision medicine. 
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Data availability 

Code for UKBB data processing is on Github ( https://github.
com/ biostat0903/ PGS-Depot ) and FigShare ( https://doi.org/
10.6084/m9.figshare.24406210.v1 ). All relevant data is avail-
able through the PGS-Depot website ( http://www.pgsdepot.
net/). No new data were generated or analysed in support of
this research. 
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Supplementary Data are available at NAR Online. 
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