The Divergence Test: If $\lim_{n\to\infty} a_n \neq 0$, then $\sum a_n$ diverges.

Note: You can only conclude *divergence* using the Divergence Test. If $\lim_{n\to\infty} a_n = 0$, the test is *inconclusive*.

The Geometric Series Test: This test only applies to geometric series, i.e. series of the form $\sum_{n=1}^{\infty} ar^{n-1}$. This series converges if |r| < 1 and diverges if $|r| \ge 1$.

Note: If the series converges, then we can compute the value using the formula $\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r}$.

The *p*-Series Test: This test only applies to *p*-series, i.e. series of the form $\sum_{n=1}^{\infty} \frac{1}{n^p}$. A *p*-series converges if p > 1 and diverges if $p \le 1$.

The Integral Test: Given $\sum a_n$, if f(n) is a function such that $f(n) = a_n$ for each n and f is continuous, positive and decreasing, then

$$\sum_{n=1}^{\infty} a_n \text{ converges if and only if } \int_1^{\infty} f(x) \, dx \text{ converges.}$$

The (Direct) Comparison Test: Suppose $\sum a_n$, $\sum b_n$ are series with positive terms.

- If $\sum b_n$ is convergent and $a_n \leq b_n$ for each n, then $\sum a_n$ is also convergent.
- If $\sum b_n$ is divergent and $b_n \leq a_n$ for each n, then $\sum a_n$ is also divergent.

The Limit Comparison Test: Suppose $\sum a_n$ and $\sum b_n$ are series with positive terms. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c \quad \text{where } c \text{ is positive and finite}$$

then either both series converge or both diverge.

Note: for both types of Comparison Test, good choices of series to compare to are *p*-series or geometric series.

The Alternating Series Test: This test applies only to alternating series, i.e. series that can be written $\sum (-1)^n b_n$ or $\sum (-1)^{n+1} b_n$ where $b_n > 0$. If

- $\lim_{n \to \infty} b_n = 0$, and
- $\{b_n\}$ is decreasing,

then the series is convergent.

Note: If one of the two conditions above is not true, Alternating Series Test is *inconclusive*. However, if the Alternating Series Test fails, the Divergence Test is a good idea to try next.

The Ratio Test: Suppose we have a series $\sum a_n$ and

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = L.$$

- If L < 1, the series is absolutely convergent (hence convergent).
- If L > 1, the series is divergent.
- If L = 1, the test is inconclusive.

1. Select the best test for determining whether the following series converge or diverge. Hint: try to eliminate the tests that do not apply. (You do not need to determine whether the series actually do converge or diverge.)

- 2. Find an example of each of the following or explain why such an example does not exist.
- (a) A sequence $\{a_n\}$ such that $\{a_n\}$ converges to 0, but $\sum_{n=1}^{\infty} a_n$ diverges. Let an=n. The seq. converges since lim tr=0. The series Z & diverges. (b) A sequence $\{a_n\}$ such that $\{a_n\}$ diverges, but $\sum_{n=1}^{\infty} a_n$ converges. No such example exists by the Divergence Test (c) A sequence such that $\left|\frac{a_{n+1}}{a_n}\right| < 1$ for all n and the series $\sum_{n=1}^{\infty} a_n$ diverges. Consider $\sum_{n=1}^{\infty} \frac{y_n}{n}$. Then $\left|\frac{a_{n+1}}{a_n}\right| = \frac{y_{n+1}}{y_n} = \frac{y_n}{n+1} < 1$ for all n. Also this series divorges. 3. Suppose $a_n > 0$ for all n and the series $\sum a_n$ converges. (a) Must the series $\sum_{n=1}^{\infty} (-1)^n a_n$ converge? Explain why or why not. Yes since we know that I an = Z[(-13" an] converges, which means $\sum_{n=1}^{\infty} (-i)^n a_n$ converges absolutely. (b) Why is it true that $a_n < 1$ for all n after a certain point? Since I an converges, we know that lim an=0. So the terms must get close to O after some point. (c) Show that $\sum_{n=1}^{\infty} a_n^2$ must converge. (Hint: use the Comparison Test) If anc 1 for all n after some point, then $a_h^2 < a_h^{\prime}$, μ 13 Since Zan converges, Zan² also converges by the Companison Test.