Math 2300: Calculus 2 Handout Convergence Tests for Series

The Divergence Test: If lim a, # 0, then E a, diverges.
n—oo
Note: You can only conclude divergence using the Divergence Test. If li_)m an = 0, the test is inconclusive.
n oo
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The Geometric Series Test: This test only applies to geometric series, i.e. series of the form Y ar™~!. This
n=1
series converges if |r| < 1 and diverges if |r| > 1.
oo
Note: If the series converges, then we can compute the value using the formula 21 ar" = T
n=
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The p-Series Test: This test only applies to p-series, i.e. series of the form ) # A p-series converges if p > 1
n=1

and diverges if p < 1.

The Integral Test: Given ) a,, if f(n) is a function such that f(n) = a, for each n and f is continuous, positive

and decreasing, then
o0

o0
Z ay, converges if and only if / f(x) dx converges.
1

n=1
The (Direct) Comparison Test: Suppose > a,, > b, are series with positive terms.
e If > b, is convergent and a,, < b, for each n, then > a, is also convergent.

e If > b, is divergent and b,, < a,, for each n, then ) a, is also divergent.

The Limit Comparison Test: Suppose > a, and >_ b, are series with positive terms. If

lim — = ¢ where c is positive and finite

then either both series converge or both diverge.
Note: for both types of Comparison Test, good choices of series to compare to are p-series or geometric series.

The Alternating Series Test: This test applies only to alternating series, i.e. series that can be written
> (=1)"by, or >_(—1)""1b, where b, > 0. If

e lim b, =0, and
n—oo

e {b,} is decreasing,
then the series is convergent.

Note: If one of the two conditions above is not true, Alternating Series Test is inconclusive. However, if the
Alternating Series Test fails, the Divergence Test is a good idea to try next.

The Ratio Test: Suppose we have a series Y a, and

an+1
Gn

lim = L.
n—oo

e If L < 1, the series is absolutely convergent (hence convergent).
e If L > 1, the series is divergent.

o If L =1, the test is inconclusive.
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1. Select the best test for determining whether the following series converge or diverge. Hint: try to eliminate
the tests that do not apply. (You do not need to determine whether the series actually do converge or

diverge.)
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2. Find an example of each of the following or explain why such an example does not exist.

(a) A sequence {a,} such that {a,} converges to 0, but i an diverges.
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(b) A sequence {ay} such that {a,} diverges, but Z a, converges.

n=1
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(¢) A sequence such that GZH < 1 for all n and the series Z a, diverges.
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3. Suppose a, > 0 for all n and the series Z a, converges.

n=1

(a) Must the series Z(—l)"an converge? Explain why or why not.
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(b) Why is it true that a,, < 1 for all n after a certain point?
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(¢) Show that Z a? must converge. (Hint: use the Comparison Test)
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