Taylor's Inequality

The remainder of the Taylor series for f(x) centered at a is defined as

$$R_n(x) = f(x) - T_n(x),$$

where $T_n(x)$ denotes the *n*th degree Taylor polynomial (also centered at *a*). Taylor's Inequality says that if $|f^{(n+1)}(x)| \leq M$ for all *x* satisfying $|x-a| \leq d$, then

$$|R_n(x)| \le \frac{M}{(n+1)!} |x-a|^{n+1}$$
 for x satisfying $|x-a| \le d$.

1. Use Taylor's Inequality to determine the number of terms of the Maclaurin series for $f(x) = \sin(x)$ needed to compute $\sin(3^{\circ})$ to within 0.000005.

- 2. (a) Find the 2nd degree Taylor polynomial, $T_2(x)$ for $f(x) = x^{-2}$ based at a = 1.
 - (b) Use Taylor's Inequality to estimate the accuracy of the approximation using $T_2(x)$ to estimate f(x) in the interval [0.9, 1.1].

If you're using a Taylor polynomial to approximate f at a particular value of x instead of a range of x, the following formulation of Taylor's Inequality is sometimes useful.

Alternate Statement of Taylor's Inequality

If $|f^{(n+1)}(x)| \leq M$ for all x between a and x_0 , then

$$|R_n(x_0)| \le \frac{M}{(n+1)!} |x_0 - a|^{n+1}.$$

3. How large should n be to guarantee that the approximation of $\ln(0.5)$ using an nth degree Taylor polynomial for $\ln(1+x)$ centered at a=0 is within 0.0001?

4. Estimate the range of values of x for which the approximation

$$\ln(x) \approx \ln 2 + \frac{1}{2}(x-2) - \frac{1}{8}(x-2)^2$$

is accurate to within 0.01.