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Foreword

I prepared these notes for lecturing Ergodic Theory (PhD level) in the Federal University of Minas
Gerais (UFMG), during 2020. I haven’t revised them completely so they most likely contain
mistakes, but still they may have some useful parts: in any case, proceed with caution.

For the course, I assumed some familiarity of the students with abstract measure theory and
functional analysis, but not with dynamical systems. My audience were (typically first year)
specialists in either Dynamics or Probability, so I've tried to cover topics of common interest in
these two areas.

The basic bibliography was [8, 9, 15, 20], from where I have borrowed broadly. Other useful
material is [21, 26, 29, 30].

To do: there are very few exercises, I'll try to add more in the future. The index requires more
work.
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CHAPTER 1

Introduction

Ergodic theory is a vast and very active area of mathematics, with many interactions with other
branches (as algebra, dynamical systems, probability, geometry, number theory, and so on). It is
somewhat difficult to define precisely what ergodic theory is: we’ll content ourselves with the
working definition given below and discuss informally some examples and applications to give
the reader some general panorama. A few of these examples will be studied with more detail
during the course.

Definition 1.0.1 (due to Sinai). Ergodic theory is the study of the statistical properties of group
actions on non-random objects.

Setting
e (M, %y, 1) is a measure space.
* (G is a group (or a semi-group).

* T :G ~ M is an effective action by auto/endomorphisms of (M, By, 11).

In other words, for every g € G the map T, = T'(g) : M — M is measurable, and

- g1,92 € G = Tgrgz = Tgl © Tg2'
- if 1 € G is the identity element, then 77 = Idy,.

— The action is measure preserving, meaning
Vge G, A€ By= M(Tg_l(A)) = u(A)
In this course unless otherwise stated:
* measure = probability measure (= u(M) = 1).

xx (G = Z,R or N,RZQ.

a) Discrete case. G = Z,N — T : G ~ M is determined by T}: T,, = (T})".
We denote 7" := T} and study the iterations of the map 7': M — M.

b) Flow case. G =R — (T}),cr : M — M flow. We assume 7" : (R x M, %Br @ By) — (M, By)
is measurable; here %y, is the Borel o -algebra of R.



2 Introduction 1.1

1.1 Statistical Mechanics

Many ideas of ergodic theory were born from Statistical Mechanics. Consider a system S with
large number of interacting particles in a vessel. Assume that the collisions are elastic and there
is no spinning (e.g. ideal gas).

Problem. Is it possible to describe the state of S, especially for large t ?

Note that given an specific particle it is essentially impossible to describe its dynamics.

Gibb’s insight (=~ 1870): Instead of describing the state of specific particles, describe the
asymptotic dynamics of almost all of them (!).

Example 1.1.1 (I've heard this from O. Sarig). Consider a closed box containing half of its volume
full of sand. The initial distribution of the sand is arbitrary (unknown). Now suppose that we apply
a periodic vertical force to the box.

T

<— sand

Question. What’s the distribution of the sand as t — oo?

Answer. (Clear!) The distribution is uniform.

Note that we don’t know what happens with a particular grain of sand, but it is easy to predict
what happens with almost all of them.

pdcarrasco@mat.ufmg.br



1.1 Statistical Mechanics 3

1.1.1 The ergodic hypothesis ~ 1900

Boltzmann, Gibbs and Maxwell wanted to understand thermodynamics using Statistical Mechan-
ics. To justify equilibrium, Boltzmann (implicitly) made the following hypothesis:

EH: The motion of S is random, or chaotic.

Let us try to be more precise in what Boltzman meant. We start recalling the well known fact
that the motion of S is given by a Hamiltonian system. This means that we have

e M?" a manifold (where n is very large),
* we O?(M) asymplectic form (that is, w™ € Q**(M) is a volume form and dw = 0)
* H: M — R a Hamiltonian (= the energy).

The structure (M, w, H) determines an evolution law (¢;), : M — M. Since H is a constant of
motion (=~ Vz € M, H(¢:(z)) = H(z)), we can restrict (¢,);|N where N = H~'(c) is an energy
level (for ¢ € R regular value). Assume that N is compact: then (¢;); : N — N is complete and
w" induces a probability measure uy on N, called the Liouville measure. It turns out that uy is
invariant under (¢;|N);.

EH: For every observable (i.e. any physical quantity that can be measured from the system, for
example, its temperature) f € C(N), it holds

T

The left hand side is called the time average of f, whereas the right hand side is its space average.
Thus Boltzmann’s ergodic hypothesis establishes that for any observable, its time and space
averages coincide.

Remark 1.1.1. The formulation given above of the EH is not what Boltzmann had in mind, but this
form is more precise. We refer the reader to the article of Calvin Moore [17] for the history of the
EH.

1.1.2 Recurrence

Consider a set A C N of possible states with py(A) > 0. Poincaré (and also Gibbs) showed that
#{n e N:¢,(z) € A} = oo for uy-a.e.(z € A).
Example 1.1.2. Suppose that all the gas is contained in the some part of the vessel, separated from

the other by some mechanism, say, a wood plank. A time t = 0 we remove the plank very slowly, in
such a way that the change in the total energy of the system is negligible.

Recurrence: for oo many times all particles are back to the first half of the vessel.

Question. How come?

Answer. The expected time of these returns is several orders higher than the age of the universe (see
exercise...).

pdcarrasco@mat.ufmg.br



4 Introduction 1.2

Still, the above consequence seems odd, and in particular it gives the impression that it may
contradict the Second Law of Thermodynamics. This in fact was Zermelo’s objection to Boltzmann’s
explanation for the convergence to equilibrium (his H-theorem). The solution to this apparent
paradox is more subtle; time permitting we will discuss it at the end of the course, but for now you
can check [10].

1.2 Lagrange’s Mean Motion problem

Let’s discuss another case where ergodicity (‘time average=space average’) appears.
During his studies on celestial mechanics Lagrange encountered the following problem: for
ay,- -+ ,a, € Cand wy,--- ,w, € R consider

2(t) = Zakeiw’“t t>0.
k=1

Let 0(t) be the angular displacement of z(t), i.e. z(t) = r(t)e?® with §(¢) € R and assume that
z(t) # 0: it follows that 6 is a continuous function of ¢. Denoting the principal argument of a
complex number z by Arg(z), we have that

0(t) = Arg(z(t)) + 2mn(t)

for some integer valued function n(t).
Lagrange’s problem: compute (if exists)

T
Q= lim M
Remark 1.2.1. If z(t) is closed and T is the period, then

0(T)
orT

is the average angular velocity, and is called the mean motion.

The solution to Lagrange’s problem was given by Weyl.

IThat is, Arg(z) = Im(Logz) € [0, 27)

pdcarrasco@mat.ufmg.br



1.2 Lagrange’s Mean Motion problem 5

Theorem 1.2.1 (Weyl, 1914-1938). If w = (wy, - - ,w,,) is independent over Z (meaning, for every
ke Z" k-w=0implies k = 0), then (2 exists and in in the simplex generated by w, - -- ,w,. That
is, there exists py,--- ,p, > 0,> 0, pr, = 1 such that

Q= Z PrWr .
k=1

Let us try to understand this result. Consider M = T" = S* x .. x S! the n-torus and let p
be the Lebesgue measure on M. Define the translation flow

QSt(Z) — (6iw1t21, . 761‘4«1711&2,“)

One checks without any trouble that p is invariant under (¢;);. Now consider the linear function
h:M — C,

hz)=>la| - %
k=1

and define M’ = M \ ker(h): clearly u(M’) = 1. Let f : M' — [0, 27) given by f(z) = Arg(h(z)):
f is well defined and analytic on M” = M’ \ f~'(0). Note that u(M") = 1.
Finally, consider g : M"” — R the derivative under the flow of f,

d

o) = 2| Fo = S| Amm(en) ()= h(6(2))

Since ¢y, () (t) = h(p1(ds(2))) = c.(s + 1), we get

9(6u() = 5| Arm(ea (1) = o

Arg(c.(1)).

t=s

hence
/ 9(6:(2)) = 0(c-(T)) = 603 [ax|zxeT).
0 k=1

Taking z, = (e?Am8(@) ... ciArs(@n)) we finally deduce

T—o0 '

Q= Jim 7 [ glou(za))as

In other words, 2 is the time average of g at z,,.
It turns out (as will be shown in the course) that Weyl’s hypothesis on w implies ergodicity,
and thus

i 7 [ otonds = [adu -0l

T—o0 1

If convergence holds for the particular point z,, then

Qz/gdu

and we have solved (part of) Lagrange’s problem. This is true: convergence holds V z € T" [31,

1.
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6 Introduction 1.3

1.3 Applications to number theory

This is traditionally one of the most important sub-areas of ergodic theory. In this course we’ll
only have chance to see a glimpse of this beautiful topic.

1.3.1 Weyl’s equidistribution theorem (1916)

We’ll consider a result of Weyl related to what we discussed before. This is probably the first
‘ergodic theorem’.

Definition 1.3.1. A sequence (z,,), C [0, 1] is equidistributed if for every I C [0, 1] interval,

#1<i<n:z; €I}

n n—00

> || (= Leb(1)).
Question. Do equidistributed sequences exist?
Theorem 1.3.1 (Weyl). Let a« € R\ Q and consider r,, : [0,1] — [0, 1] given by r.(z) = = + «

mod 1. Then {r7(0)}>°, = {na — [na]}>2, is equidistributed.

Observe that

1<i<n: yel 1
#lsisnr@el Zn,or
n

a ‘time average’. Equidistribution of {r7/(0)}>, is thus equivalent to

VI C [0, 1] interval, Z]lfor 1;dx.

n~>oo
Compare this with the mean motion problem discussed before.

1.3.2 Borel’s Normal Number Theorem

For x € (0,1) \ Q we consider its decimal expansion, x = .zox 22 - - -, i.€. a sequence (z;)7° with
z; € {0,---,9} such that

The decimal expansion of a number is not necessarily unique, but

Leb(z € (0,1) : x has a unique decimal expansion) = 1.

Definition 1.3.2. z € (0,1) is normal (in base 10) if for every k € N, for every block [jy, ..., jk]
with j; € {0,---,9} it holds

#{[jlv' .- 7jk] : [jla- .- 7]19] appears in [.flf(),. - ,In_l]} N 1

n n—oo 10k

pdcarrasco@mat.ufmg.br



1.3 Applications to number theory 7

Question. Do normal numbers exist?

Theorem 1.3.2 (Borel ~ 1909).
Leb(z € (0,1) : x is normal) = 1.

An ergodic theory approach to this problem is the following: consider the transformation
T:[0,1) — [0,1) given by Tz = 10 -  mod 1. By looking at the picture below one is convinced
without too much trouble that the Lebesgue measure y is invariant under 7'. At least it holds for
intervals: if J C [0, 1) then T—'.J consists of 10 intervals of one-tenth of the size of .J. This, we
will show later, is enough that guarantee that 7" preserves .

A
1

01 02 03 04 05 06 07 08 09 1

o

Fact: 1 is ergodic for 7.

Now given = with decimal expansion z ~ .xgx; - - - ¥, - - -, we have that x; = j if and only if
Tix € [L,5) = I, (for 0 < j <9)). Thus [jy, ..., ] appears in [z, ..., z,_] if and only if

107 10
Tz €I},
T € I,
3t <n—1-—k such that
T € I

or equivalently, T'z € I, N T 'I;, N---T-*=V[, := [, ,: note that ;. is an interval of

length 5. We deduce

#{[71,- -, Jk) : [J1,- .-, Jx] appears in [z, ..., x,_1]}

n
1 n—1
~n Zo]lljl“‘jk (T'z) —— [ 1y, du ae(z)

by ergodicity of x. To conclude the proof of Borel’s theorem observe that

n—oo

0 n—1
1 i i
Normal numbers = ﬂ ﬂ {z: - Z(; Ir, (T'z) —— Ir, (T'z) dp}

k=171, 7k

pdcarrasco@mat.ufmg.br



8 Introduction 1.3

and since the set of the right hand side has full Lebesgue measure, the same is true for the set of
normal numbers.

One can even give the following generalization.

Definition 1.3.3. z € (0,1) is absolutely normal if it is normal in every base b € Ny,

Corollary 1.3.3. Leb(Abs. normal numbers in (0,1)) = 1.

Open Question.
1. Give an example of one specific absolutely normal number.

2. Is m# — 3 normal?

1.3.3 Continuous Fractions

Given z € (0,1) \ Q one can find a unique (infinite) sequence {a;(z)}2, with a;(z) € N5y such
that

: 1 :
"=, m——
ar+ a2+ L
o
The rational number £* = [ay, - - -, a,] is what is called a ‘rational approximation’ of x:
1
Qn qn

It is also optimal in the following sense:

V0 < q< ot A S p— 2| <Ip—q-al.
4 Gn
We will study this representation of numbers with more detail later. For now it suffices to say that
the sequence {a;(z)}$2, is very related to the arithmetic properties of x, and thus it is interesting
to know the distribution of these numbers. With somewhat similar arguments to the ones used
in Borel’s theorem we will establish the following.

Theorem 1.3.4. Leb — a.e.(x € (0,1)) satisfies for every j € N,

#Hl<i<n:a(@)=j} 1 log(l+7)
n n—oo log2log(1 + Jﬁ)

More sophisticated techniques in Ergodic Theory (which won’t be covered in a first course)
permit to prove much more. See [27].

Theorem 1.3.5 (Gauss-Kuzmin-Levi). Forall j € N,

1 log(1+3)
n—oo log2log(1 + J%)

Leb(z : a;(z) = j)

pdcarrasco@mat.ufmg.br



1.3 Applications to number theory 9

1.3.4 Multiple recurrence: Furstenberg’s proof of Szemeredi’s theorem
and Green-Tao’s theorem

Let us recall that an arithmetic progression in Z is a sequence {a + j - b}_,, with a,b € Z and
[ € N>0 U {OO}

Theorem 1.3.6 (Van der Warden ~ 1927). If we partition (“we color”) N into finitely many pieces
Ay, -+, Ay then there exists some piece A; that contains arbitrarily long arithmetic progressions.

What this theorem says in some sense is that the structure of the set of natural numbers
cannot be destroyed by finite partitions, and necessarily one the pieces is also very structured.
Based on this fact, Erdos and Turan proposed the following (famous) conjecture:

Conjecture (Erdos-Turan conjecture (~ 1936):). If A C N has positive upper density (or Banach
density), then A contains arbitrarily long arithmetic progressions.

The upper density of A is defined as

den(A) := lim sup #ANRL: - ,n}‘

n—00 n

Observe that the affirmative solution to this conjecture implies in particular Van der Warden’s
result. This was achieved by Szémeredi.

Theorem 1.3.7 (Szémeredi 1975). Erdos-Turan conjecture holds.

The original proof is difficult and very technical. A breakthrough was made by Furstenberg
around 1979 who have a different proof of Szémeredi’s theorem using tools from Ergodic theory;
his approach can be summarized as follows.

Consider {0,1} as a discrete space and M = {0,1}" with the product topology: M is a
compact metrizable space. Let o : M — M be the shift map, (oz),, = z,1. This map is readily
verified to be continuous, and thus in particular Borel measurable. Given A C N we define an
element z € M simply by checking where n belongs to A, that is z = (1 4(n)).,en, and observe

n

= ﬂn(c)

where C' = {z € X : vy = 1} and p, = 2 37" 67:. € P»(M). Note that the set C is both open
and closed, thus 1. is continuous on M.
Consider now S C N infinite set satisfying

den(A) := lim #AOHL - ,n}'

nes n

In this course we’ll prove (since M is compact and o : M — M is continuous) that there exists
S’ C S infinite and ;1 a o-invariant probability on M such that

viee), [ fam— [rau

As a consequence ;(C) = d(A) > 0. Now we state Furstenberg’s result.

pdcarrasco@mat.ufmg.br



10 Introduction 1.4

Theorem 1.3.8 (Furstenberg’s Multiple Recurrence Theorem). Let T : (M, %Bm, ) O be a
measurable dynamical system, and consider C' € By with p(C) > 0. Then

VE>33N >1st p(CNnTNCn-.- T NEDC) > 0.
Inourcase C = {z € X :7p = 1} leadsto CNoNC N o VENC = {1 : 29 = l,2ny =

L oNg-1) = 1} =: Ck n. Again Ie, is continuous, and since

/]]-C)“N dlun H—E? /]]-Ckyzv d,LL > 07
we deduce that there exists some n such that y,,(Cj y) > 0. But this implies that for some r € N,
reAr+NeA -r+k-1)NeA

and A contains an arithmetic progression of at least & terms. As k is arbitrary, the above implies
theorem 1.3.6.

Of course the difficulty is in establishing the Multiple Recurrence Theorem; this is not
simple but not extremely hard either. More importantly, its a fruitful idea that leads to several
generalizations. Here is a famous one.

Theorem 1.3.9 (Green-Tao, 2004). The set IP of primes contains arbitrarily long arithmetic pro-
gressions.

Note that by the Prime Number theorem,
#PN{l,--- ,n} =m(n) ~logn

and thus d(P) = 0.

1.4 Applications to Geometry

We’ll only state two applications as an example. Time permitting we’ll discuss the first in the
lectures, and leave the the second for a more advanced course.

Let us start with some generalities. In this part X denotes a compact Riemannian manifold,
and M is its unit tangent bundle, i.e.

M=TX, ={(z,v):ve T, X, |v| =1}

The Riemannian metric on X induces naturally a Riemannian metric on M (the Sasaki metric),
and in particular there is a volume element ; in M. Alternatively, one can use that 7*X is
(the prototype of) a symplectic manifold, and consider the Liouville volume element on 7% Xj.
Identifying (isometrically) 77X and 7% X we get a volume element on 7'X;

Definition 1.4.1. The geodesic flow on M is the flow (¢;)icr : M — M given by

P2, 0) = (y,u)

where (y,u) in in the geodesic containing (z,v) at distance t, in the direction of v.

We will show later that y is invariant under (;);cg.

pdcarrasco@mat.ufmg.br



1.4 Applications to Geometry 11

1.4.1 The theorems of E. Hopf-L. Green and A. Avez

We say that X is without conjugate points if for every p, ¢ in X (the universal covering of X) there
exists a unique geodesic joining p and q.
Equivalently, for every p € X the exponential map exp, is a local diffeomorphism.

Example 1.4.1. If X is covered by R? with the standard metric (Euclidean space), or by H?
with the hyperbolic metric (Hyperbolic space), then X is without conjugate points. Thus, by the
uniformization theorem it follows that if X is a compact Riemannian surface different from the
sphere, then X is without conjugate points. Of course, if X is the sphere then it has conjugate points

In this setting, we have the following classical theorem.

Theorem 1.4.1 (E. Hopf 1948). Let X be a compact orientable surface without conjugate points.
Then its total curvature (= f K dA, where K is its Gaussian curvature), is non-positive.

Proof. Let v = d“’t |i—o the vector field generating the flow. The fact that X is without conjugate
points implies that there exists a solution y : M — R of the Ricatti equation,

Zi(y)+y+ Kor=0

where 7(z,v) = x and &5 denotes the Lie derivative in the ¢’ direction. Take time average in the
previous equation and use the fundamental theorem of calculus to kill first term and deduce

T
0= lim %/0 y(¢e(w,v))2dt + hm —/ Kr(pi(x,v))dt p-a.e.((x,v)).

T—o00

Above we used the existence of the limit ;.- a.e.((x,v)), but not that this is a constant since we
don’t know ergodicity of the system; this existence s - a.c. will be proven during our course. Not
only that, it turns out that additionally

1 T
¢! dp= [ lim — dt dp.
fE é/fu /TgroloT/of It

Therefore (f = K o),

0> / Kr(z,v)du(z,v) = / K(z) dA(z).
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12 Introduction 1.4

Observe that if we further assume that X = T? (the two-torus), then by the Gauss-Bonnet
theorem

0:27rx(X):/K-da¢KEO,
X

i.e. the metric is flat. The above theorem was extended by L. Green to compact manifolds without
conjugate points of arbitrary dimension, showing that in this case the sectional curvature (the
natural extension of the Gaussian curvature to higher dimensions) of X is non-positive.

The idea of using Ergodic Theory to establish Hopf’s theorem is due to A. Avez, who in passing
obtained a more general version of this result. To state Avez’ theorem we’ll use a concept of
Riemannian geometry: we say that a compact Riemannian manifold is without focal points if
spheres in X are convex (that is, for every open ball B C X, for every p,q € B there exists a
unique minimizing geodesic contained in B joining p and ¢). If X is without focal points, then it
is without conjugate points.

Theorem 1.4.2 (A. Avez 1970). Suppose that X is a compact connected manifold without focal
points. Then either

* X is flat (its sectional curvature vanishes everywhere), or

* m1(X) has exponential growth.

1.4.2 Distribution of geodesics

Assume that the sectional curvature of X is negative: it is well known then that (¢, ); has infinitely
many closed geodesics and V7' > 0 it holds

7(T) := #{~ : v closed geodesic of length < 7'} < cc.

We then have.

Theorem 1.4.3 (Margulis 1969). 3 h > 0 such that 7(T) ~ %

The number h above is the entropy of the geodesic flow. Compare the statement of Margulis’
result with the Prime Number Theorem.
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CHAPTER 2

Measure Preserving Transformations

2.1 Measures on compact metric spaces

We will start by considering some generalities for probabilities on compact metric spaces. It turns
out that this is not a very strict assumption: any “reasonable” finite measure space is isomorphic
to [0, 1] equipped with (a multiple of) the Lebesgue measure and countably many atoms. We’ll
discuss this and some of its consequences with more detail in Chapter 9, but for the time being
we make the following assumptions:

1. (M,dy) is a compact metric space.

2. B\ is its Borel o -algebra.

We denote
C(M):={f:M — R: fis continuous}
M (M) := {finite (real valued) measures on M}
(M) = {p € M(M) : p(A) = 0,YA € B}
Pr(M) :={p € M(M) : p(M) = 1}.

Remark 2.1.1.
1. Every finite measure on a compact metric space is regular, i.e. if u € M (M) then
VA€ By, wp(A) =sup{K C A: K compact} =inf{U D A: U open}.

2. M(M) is a (real) normed vector space with ||u||ry = |p|(M) (where |p| is the total variation
of 1), and M (M), is a cone on M (M ). Note that in particular

Pr(M) = {p: lplle = 13 O M(M) 4

and P+ (M) is convex.

13



14 Measure Preserving Transformations 2.1

The following fact is useful in presence of regularity.

Note. If U C M is open then there exists a sequence { K, },>¢ of compact subsets of M such that
K, C Ky, CcU U=,>¢Kn Similarly, if K C M is compact then there exists a family {U,, }n>o

of open sets such that U,, D Uy D K for all n, K = (,»o Un. In addition, given K C U C M with

K compact and U open, the function f(z) = - (xdgfc()ig;)(x e

f|K = 1. Putting together these facts we deduce:

5 Is continuous, has support in U and

1. given U C M open there exists ( f,,)n>0 Sequence in C(M) such that f,, / 1y.

2. Given K C M compact there exists ( f,)n>0 Sequence in C(M) such that f, N\, 1.

The vector space C(M) is equipped with the uniform norm; its dual C(M)* = {¢ : C(M) —
R : ¢ linear and continuous} is equipped with the operator norm

[@ller = sup{lo(f)] = [ fller < 1}

Basic facts in measure theory allow us to check that any p € #((M) defines an element W (u) €
C(M)* simply by “integration with respect to x”, and this defines a map ¥ : M (M) — C(M)*,

wmxﬂz/fw,

with [|[W(u)]|op = ||p]|7v; it follows that W : (M(M), || - ||v) = (C(M)*, || - ||lop) is (linear) isometric
embedding. It is a central theorem in functional analysis (Riezs’ representation theorem) that
the map V is in fact surjective, thus, an isomorphism; i.e. any continuous functional ¢ on C(M)
is given by integration with respect to a (uniquely defined) regular measure ;. The image of
the cone Jl (M) is the cone of positive functionals: i) € C(M)* is positive if f > 0 = ¢(f) > 0.
Finally, the image of P+ (M) is the set of positive functionals ¢ satisfying ¢/(1,,) = 1. From now
on we'll identify 4L (M) = C(M)*, and in particular we write u(f) = [ f dpu.

2.1.1 Weak-* convergence
We endow Jl (M) with the weak-* topology,

(1i)ier net, then y; TR VfeC(M),pu(f) 7 pu(f)-
A sub-basis for this topology is given by sets

Vil f) = {n € (M) [u(f) = 7| < e} rERe>0.

Notation. (Ml (M),w*) is the space (M) equipped with the weak-+ topology. Similarly for
subsets of JL(M).

Lemma 2.1.1 (Alaoglu). (P+»(M),w*) is compact.

pdcarrasco@mat.ufmg.br



2.1 Measures on compact metric spaces 15

Proof. We can write JL(M) C [[;cc() Ry where Ry = R for every f; by comparing converging
nets one sees that the previous inclusion holds as topological spaces. Also,

Pr(M)C T FIAILIAI]
)

fec(Mm

and the set on the right is compact by Tychonoff’s theorem. Since P+ (M) C (M) is closed, the
claim of the lemma follows. |

Lemma 2.1.2. C(M) is separable.

Proof. M is separable. Fix D = {z,},, C M dense and define f,(z) := dy/(x,x,); then f, € C(M)
and by density of D the set { f,,} separates points (z # y € M = 3f, such that f,(z) # f.(v))-
Let

-’4@ = Span@{]lM)fnan > 0}

Then Aq is a countable sub-algebra of C(M) that separates points and for every z € M there
exists f € Ag such that f(x) # 0. By the Stone-Weirstrass theorem, Ao = C(M). |

Consider then F = {f,},>0 C C(M) a dense countable subset in {f : ||| = 1} and define
dgsV(M) = dg]»r(ML]: : @V(M) — QJV(M) — REO by

n>0

Then dg,.(ar) is a distance on %+ (M) and y; w—> w if and only if dgs,.(ar) (2, p15) — 0 (exercise item 1).

This means that the identity map Id : (P+(M),w*) = (P#(M),dg.(n)) is continuous, and since
the domain is compact and the codomain is Haussdorf, this map is in fact an homeomorphism.
We have proved the following.

Proposition 2.1.3. (P»(M),w*) is metrizable

In particular, to analyze convergence in P+ (M) we can use sequences instead of nets.

2.1.2 Transformations

We go back to a more general situation now and consider two measurable spaces (M, By ), (IV, By)
and a measurable map 7" : (M, %y) — (N,%y). This map 7" induces T, : P+ (M) — P+(N),
T,y = poT™1, that is

B € By = Tou(B) = p(T'B).

Notation: Ty = T, p.
Complementary to this, we write

Fun(M) ={f:(M,%Bu) - R Borel measurable}
Fun, (M)={feFun(M): f>0}
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16 Measure Preserving Transformations 2.1

and similarly for N. ) R
Then 7" induces a transformation 7' : Fun(N) — Fun(M) with g € Fun(N) = T(g) =
goT.

M-L.N

\ 9
goT'

R

~

Notation: Tg = T'(g).
Observe that T(Fun (N)) C Fun (M), and if B € By then T1lg = 1p-15.

Lemma 2.1.4. If g € Fun(N); and p € P+(M) then

/nguz/ Tgdp
N M

Proof. The equality holds when g is a characteristic function, and thus also for simple functions.
In general, g is the pointwise limit of an increasing sequence of simple functions (h,,),, which in
turn implies that Tg is the pointwise limit of the sequence of simple functions (Th,,),. Thus!

/nguzlim/ h,dTu by the MCT
N " JN

= lim / Th,du since h,, is simple
"M

:/ Tgdp by the MCT
M

The following is direct to verify.

Lemma 2.1.5. Let T : (M,%By) — (N,Bx),S : (N,Bx) — (P, %Bp) be measurable transforma-
tions. Then

1. (Idar)s = Ldg,(an, Idy = Idg o ()
2. (To8),=T.0S, (ToS) =80T
In particular if N = M then for every n € N, (I"), = (T.)" and T* = (T)".

We will now make the additional assuption that both M, N are compact metric spaces and
T : M — N is a continuous map

Corollary 2.1.6. The map T, : P+(M) — P+ (N) is continuous with respect to the weak-x topology

Proof. Use lemma 2.1.4. |

!MCT=Monotone Convergence Theorem
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2.2 Invariant measures 17

It is well known that C()) with the uniform norm is complete, i.e. it is a Banach space.
Consider then the pairing of B-spaces (-,-) : C(M)* x C(M) — R, given by

(1, [) = u(f)

and consider a continuous map 7 : M — M. One verifies directly that 7' : C(M) — C(M) is a
bounded linear operator of norm 1, and by the previous Lemma

(T, f) = (w,Tf) Ve Pr(M),feCM).

By uniqueness of the adjoint we deduce that 7\ : C(M)* — C(M)* is the adjoint of T with respect
to the pairing (,). In particular ||7.|| = ||7'|| = 1 (where C(M)* is considered with its operator
norm).

2.2 Invariant measures

Let (M, %\ ) be a measurable space and T : (M, By ) — (M, By) a measurable transformation.
Definition 2.2.1. p € Pv(M) is T-invariant (— p € Pvr(M)) if Tp = p.

Note that for establishing that a measure p is invariant we would have to check that pu(A) =
wu(T—tA) for every A € By The simple lemma below is useful for reducing the work.

Lemma 2.2.1. Suppose that A C By is an (boolean) algebra that generates By (Co1y gen (A) =
B). If

VA€ A (T A) = p(A)
then € Pvp(M).

Proof. ThesetC ={A € By : Tu(A) = u(A)} is a o-algebra that contains A, thus coincides with
B |

Remark 2.2.1. More generally, the above lemma still holds if instead of assuming that A is an
algebra we only require for it to be closed under finite intersections (a so called n-system). This is
consequence of Dynkin’s m — \ Theorem . See Appendix A.

Example 2.2.1. Periodic points If x is a fix point of T then §,, € P+ (M). More generally, if = is
a periodic point of T' with period p then

18-
=2 or
P
is an invariant measure for T'; this is immediate from the fact that for every y € M,T6, = 07,

Example 2.2.2. Rotations. For o € R define r,, : S' — S! the rotation of angle a,
ro(z) =€ 2.

Then the Lebesgue measure \ on S' is invariant under r,.
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18 Measure Preserving Transformations 2.2

Example 2.2.3. Expanding linear maps. Let E : [0,1) — [0, 1) be given by E(x) = 2z mod 1.
For an interval I = [a,b) we see that E~'(I) = [%,5)U ¢+ 1,2 +1).

A

It follows that |E~'(I)| = |I|, and by Lemma lemma 2.2.1 we deduce that E preserves the

Lebesgue measure. Note that this map has (infinitely) many periodic points, thus besides Lebesgue it
has several other invariant measures.

Arguing similarly we verify that for every d € 7 \ {0, £1} the map x — d -z mod 1 preserves
the Lebesgue measure, and clearly © — x,x — —x also preserve Lebesgue in [0, 1).

Example 2.2.4. Gauss’ map. Define G : [0,1] — [0, 1] by the formula®

0 x =0
G(x) =
LR PRk

Note that this is oo-to-one map. On the interval J, := [=5, %), G(z) = 1 — n, and thus its inverse

[}
1

branch g, : (0,1] — J, is given by g,(z) = —

z+n’

2[z] denotes the integer part of =
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2.2 Invariant measures 19

It is a result originally due to Gauss (!) that the measure du = 10221% is invariant under G.
The computation is not hard, and I'll leave it as exercise 2. This is the usual presentation in several
Ergodic theory textbooks, however I find this approach unsatisfactory. How one would arrive to this
expression for u?

We will develop machinery to attack this type of problems in Chapter ?

Example 2.2.5. Not every measurable map has an invariant measure. A classical counterexample
is given by the map T : [0, 1] — [0, 1]

x#0

r=20

T(x) =

o8

This map is only discontinuous at x = 0, and thus Borel masurable. Suppose that y where T-
invariant: given I = [a,b) C [0, 1] note that there exists some n such that f~"(I) = (), and thus by
invariance pl = 0. This implies that necessarily p = 6,. But T'§; = 919, and thus is not invariant.

By the same arguments, if S = T'|(0, 1] then S doesn’t have any invariant measure; observe that
in this case the space is not compact, but the transformation is continuous.

Definition 2.2.2. By a (measurable) dynamical system we mean a measurable transformation
T : (M,%By) — (M,%B\) preserving some measure p on M. We denote this situation by T :
(M7 %Ma N) O, or b.y (Tv lu)

Before going any further let us ellucidate the question of existence of invariant measures

Theorem 2.2.2 (Krylov-Bogolyubov ~ 1937). If M is a compact metric space and T : M — M is
continuous, then Pvr(M) # (.

Proof. We'll give two proofs of this important result.

1. Averaging method. Take any ;. € P+ (M) and define for n € N,

n—1
1
n = — TF
2 n ;;:0 « M

By convexity of P+ (M) each p, € P+(M), and by w*-compactness there exists a sub-
sequence S C N and v € P»(M) such that lim,cgs p, = v. The map T, is continuous,
thus

n—1
1 1 o+l Tru— p
T.w="T,|lim— " = lim — TF = lim ——p, + =5 =,
’ (mZ *M) s 2 B = e+ =

2. Fix point theorem. Observe that ;1 € P» (M) if and only if p is a fix point of the operator
T, : P+ (M) — Pv(M). As established before, T, is continuous and P+ (M) is a compact
convex set in a locally convex vector space; by the Schauder-Tychonoff theorem any such a
map has fix point.
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20 Measure Preserving Transformations 2.2

Let us make some general considerations and try to exploit the averaging method a little bit
further. Given = € M if we take i = 4, then y,, = 2 307 T*§, = 1 30" 6, and for f € C(M),

—

n—

f(T*z) =2 A, f(x)

0

S|

palf) =+ 3 0rualf) =

B
Il

Definition 2.2.3. For a fixed (not necessarily continuous) dynamical system (T, 1) and a measurable
function f : M — R, the measurable function

n—1

is the n-th ergodic average (or Birkhoff average) of f.
We go back to the hypotheses of Krylov-Bogolyubov theorem, and note that

e if there exists x € M and f € C(M) such that {4, f(z)},en has two accumulation points in
R, then there exist two different invariant measures.

e If there exists x,y € M and f € C(M) such that lim, A, f(x) # lim, A, f(y), again there
exist two different invariant measures.

Corollary 2.2.3. In the hypotheses of Krylov-Bogolyubov theorem, it holds that there exists a unique
T-invariant measure if and only if for every f € C(M),x € M the limit

lizn Anf(x)

exists and is independent of .

Definition 2.2.4. A continuous map of a compact metric space T : M — M is uniquely ergodic if
HPvp(M) = 1.

Suppose now that for every f € C(M) exists ¢; € R such that

Ve e M, imA, f(z) =cyf

We claim that the convergence is in fact uniform, i.e. A, f = ¢;. The proof below includes some
general arguments that are useful in other contexts.

To prove the assertion, consider the linear operator P : C(M) — C(M), Pf(z) = lim, A, f(z);
by assumption Pf = ¢; (a constant function). Then ||P| = 1 and clearly P is a projection
(P? = P), thus C(M) = ker(P) & Im(P) = ker(P) & R (where R C C(M) represents the constant
functions). We’ll now describe the set ker(P).

Definition 2.2.5. We say that f € Fun (M) is a measurable/continuous/integrable (etc.) cobound-
ary for T if there exists a measurable/continuous/integrable solution of the cohomological equation

f=9-Tyg

That is, there exists g : M — R such that f = g — g o T of the appropriate regularity; g is called
the transfer function. Two functions fi, fi € Fun(M) are cohomologous if their difference is a
coboundary.
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2.2 Invariant measures 21

Back in the case that we are discussing, consider the set
Bo6 :={f: continuous cobundary for 7'}

Obviously Bo6 C ker(P): we'll show that Go6 is dense in ker(P). By continuity of P, C' C
ker(P) = ker(P). If C' # ker(P), by the Hahn-Banach theorem there exists ;. € C(M)* such that
p|Bob =0, u|ker(P) # 0. Since p vanishes on o6, T = p.

Take f € ker(P) such that u(f) = 1; for every x € M, lim, A, f(x) = 0 and thus by® the DCT,

n—1

0= tim (A, f) = Tim - 3 (T ) = () = 1.

k=0

which is absurd. Thus 6¢6 is dense in ker(P).
We have established that

() C(M)=R®Bob
Note that
1. for f =¢; € R, A, f = f and in this case A,,f = ¢;.
2. Iff=g=Tg € Bob,A,f = L2 = 0.
Finally, we use the following property.

e The operator A, : C(M) — C(M) is linear, and || A, || = 1 Vn. In particular the family {4, }, is
equi-continuous.

{4, } converges pointwise with respect to the uniform norm in C(M) on C, thus by equi-

continuity it also converges on 6-06; this is the “; trick” (we remark that 606 is complete).

Claim. Vf € Bo6 there exists ¢; € R such that A, f = c;.

Proof. Given € > 0dg € o6 /| f — gl < 5; thus Vn, || A, f — Anglle < 5. Let f =1lim, A, f and
consider n. such that for all n > n,,

€
[Ang = coller < 3

3
[Anf = flleo <

€

3

It follows that for every x,y € M and n > n,,
[F(@) =gl SIF = Anflleo + 1 Anf = Anglles + [ Ang = ¢glleo < €
[f(z) —col <e

= [f(@) = ()] < 2e

Since ¢, z, y are arbitrary, we conclude that f is constant. [ |

3DCT= Dominated Convergence Theorem

pdcarrasco@mat.ufmg.br



22 Measure Preserving Transformations 2.3

Remark 2.2.2. By the same argument, if there exists E C C(M) dense subset such that for every
f € Ewe can find c; € R for which A, f = c;, the same holds for every function in C(M).

We have proved the following.

Theorem 2.2.4. Let T : M — M be a continuous map of a compact metric space. The following are
equivalent.

1. T is uniquely ergodic.
2. For every f € C(M) there exists ¢y € R such that lim,, A, f(x) = ¢, Vo € M.
3. For every f € C(M) there exists ¢; € R such that lim, || A, f — cfl|e = 0.

4. There exists € C C(M ) dense for which V[ € € there exists ¢; € R such that lim, || A, f—c{||e =
0.

The above theorem is essentially due to H. Weyl (~ 1916). Note that if P»,(M) = {u} then

cy =limA,f = /fd,u.

Note. Before moving on, let us recapitulate the method that we used for proving that the mean
operators (A,), converge (to a constant operator) in the case where T is uniquely ergodic.

1. We considered a (linear) space of functions F, such that for every n, A, : F O.

2. We identified the candidate to lim,, A,, (taken pointwise in F); let’s call it P. In the case we
considered, P(f) = u(f).

3. Since the (A,),, are the averages of the operators (T"),, : F — F, P should be the projection
onto a T-invariant subspace of F; i.e. P> = P and thus we get a decomposition F =
ker(P) @ Im(P). As Im(P) is (ought to be) T-invariant, convergence of (A,|Im(P)),, should
be more or less direct. Likewise, under mild assuptions (say, boundeness), for every f, we have
that f — T f € ker P and convergence to zero is direct.

4. To conclude, we first establish ker(P) is the clousure fo the coboundaries, and finally we need
an argument to allow us to pass from of (A,), convergence in a subset to convernge in the
closure.

We’ll employ a similar reasoning to establish more general results (like the Ergodic Theorem and
Von-Neumann’s theorem).

2.3 Equidistribution

Let’s see and application of the concept of unique ergodicity. We consider M = T = R/Z the
circle, and for « € [0, 1) the rotation of angle «

ro(z) ={r+a}=x+a mod 1.
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2.3 Equidistribution 23

Claim (Weyl). If o ¢ Q then r,, is uniquely ergodic; since \ is r,-invariant, it is the unique invariant
measure.

Proof. We'll use theorem 2.2.4 and show that for a dense set of functions f € € C C(T,C), A.f
converges to a constant. Then taking real and imaginary parts we conclude convergence for
every function in C(T).

Let e(x) = exp(2miz). Consider the set of trigonometric polynomials,

T riq = spanc{e,(z) = e(n-z)}.

By Stone-Weierstrass,  +#ig is dense in C(T, C). Using the linearity of the A, it suffices to check
convergence on each e,,.

cep=1=A1=1,Vk>0 V.

* n#0:then
=
Apon(x) = e e(n- (x+ ja)) by periodicity of e,
=0
k—1
:@ e(n_a)j:e(m)l—e(nk-a)
, ko 1—e(n-a)’
7=0

Since o € Q,e(n - ) # 1 and thus,

0 V.

Agonll <
[ Awen]l < k|l —e(n-a)| koo

We proved that for every* f € C(T),

n—1

LS st = [ @i

=0
Take I C T interval: then for every ¢ > 0 there exists g, f € C(T) such that
c g<1;<f.

« [(f—g)d\<e

Thus, for every n, A,g < A,1; < A, f, and by integrating [ gd\ < A\(I) < [ fd\. By taking limits
it also follows that for every =,

limsup A, 1;(x) — liminf A,1;(z) < e = ||limsup A, 1,;(x) — A\(I)]| < e.
Hence, for every z € I, lim,, A, 1;(x) = \(I), i.e.
1 .
lim—#{0<j<n:zjel}=\I) x; =7l ().
non

Recall the following definition from the introduction.

#In pursuit of precision, we should write f({z + ja}). We won't.
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24 Measure Preserving Transformations 2.3

Definition 2.3.1. A sequence (x,), C [0, 1] is equidistributed if for every I C [0, 1] interval,

#1<i<n:z el}

n n—00

s |I| (= Leb(I)).

Corollary 2.3.1. If a ¢ Q then (na mod 1),>¢ is equi-distributed.

Note. Does the previous result look unsurprising to you? I used to think that the above was ‘natural’
in some sense, but now I'm not so sure. The minimality of the irrational rotation is easier to believe,
but why equi-distribution for ALL irrationals? If « is very irregular then equi-distribution is to be
expected, but the result also holds for regular irrationals (like o« = +/2), independently of their
arithmetic properties.

Although the unique ergodicity of r, is usually obtained as a consequence of Weyl’s theorem,
one can also give a direct proof. The following argument is written in Rudolph’s book [26].
Let f € C(T).

Claim (1). (z,y) — |A.f(z) — A, f(y)| converges uniformly to zero.

Fix € > 0; there exists 0 > 0 such that dr(z,y) < § = |f(T"x) — f(T"y)| < €,¥n > 0 (because f
is uniformly continuous and 7" isometry). Pick = € T with dense orbit; for a given y there exists
k > 1 such that dp(T%z,y) < 6. It follows

n

e < 2¢ if nis sufficiently large.
n+k

2k
Aninf (@) = Ann ()] € =g M fllew +

Claim (2). (A,.f)n>0 C C(T) converges uniformly to a constant.

For m,n € N we have
1 m—1
Amn = TJmAn
f=— 2:; f

and thusifz € T,

3

=3 (A (@) — Auf (T ).

Anf(x) - Amnf(w) =

J

i
o

By the first claim it follows that given ¢ > 0 there exists ng such that for every n > ng,m > 1 it
holds

HAnw - Amn¢|lco <€

This implies that (A,v),>0 is Cauchy. Letting h = lim,, .~ A,%, we obtain by the first claim that
h is constant.
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2.3 Equidistribution 25

2.3.1 Unique Ergodicity and Minimality

Let M be a compact metric space and 7" : M © an homemorphism. We recall that KX C M is said
to be minimal for T if

* K is compact, T-invariant (7'(K) = K) and non-empty.
* If K’ C K is compact, T-invariant and non-empty, then K’ = K.

Equivalently, Vo € K,0r(z) = K.

Notation. Above, and from now on, Or(z) denotes the orbit of x by T: for F = N, Z Op(z) =
{T™z :n € F}.

Lemma 2.3.2. Forall x € M,3 K C Op(x) minimal set for T| : Op(x) .

Proof.
C:={0+# K C 6p(z): K closed T — inv}.

Then C # () : 61(x) € C. We (partially) order C bt inclusion. If (K;);c; is chain, then K = N/ K;
lower bound: this is due to the finite intersection property for compact sets.

= by Zorn’s Lemma there exists X € C minimal element for the order, and thus (easy) K
minimal set for 7|07 (x). |

Definition 2.3.2. T is minimal if M is a minimal set for T.
Proposition 2.3.3. If T' is uniquely ergodic, T'in = u, then T'|supp(u) is minimal.

Proof. Let us recall that
supp(p) = {z € M : YU € N, u(U) > 0} — supp(n) is T — invariant and closed.

Take K C supp(p) minimal set for T'|supp(p); if K # supp(u), then by the Krilov-Bogolyubov
there exists v € P+ (K). We extend v to the whole M by defining v(A) =0forall A Cc M\ K.
Then v is 7" invariant, and since supp(v) C K, it follows v # . This is absurd. |

Corollary 2.3.4. Pvy(M) = {u}, u positive on open sets = T minimal.

Remark 2.3.1.
1. M =T,T as in the picture below.
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26 Measure Preserving Transformations 2.4

Then T is uniquely ergodic (P+r(M) = {01}) but not minimal.

2. Suppose T is minimal and p € Pvp(M) = p is positive on open sets.
Indeed, if U C M is open, then | J,,., T"(U) = M, and thus (U) > 0.

3. There exist minimal transformations which preserve a measure with full support, and aren’t
uniquely ergodic.

Theorem 2.3.5 (Furstenberg). There exists f € Diff*(T) minimal that preserves the surface
area and is not uniquely ergodic.

Theorem 2.3.6 (Keynes-Newton, Keane). For any m > 5 there exists infinitely many interval
exchange transformations on m intervals that are minimal and not uniquely ergodic.

2.4 Invariant measures for commuting maps

We continue considering M a compact metric space, and let 7', S : M O be such that ToS = SoT;
note that this corresponds to a Z*(N? if T, S are not invertible) action on M,

(n,m) — TTS™.
Proposition 2.4.1. 3y € Prp(M)NPrg(M).

Proof. Take any v € P+¢(M) and consider v,, = + Z?;& Siv. By convexity of P+ (M) together
with the fact that 7, o S, = S, o T, we have that v,, € P+ (M), for every n.
Then any accumulation point of (v,,), is invariant for both 7" and S [

Corollary 2.4.2. Let {T; : M “O};c; be a family of commuting continuous maps. Then (\,.; Pvr,(M) #
0.

Proof. If F' C I is finite, then by the previous proposition the set F' := (", Pr,(M) is a (w*-closed,
convex and) non-empty subset of P+ (M ); since the later set is compact, it follows

() Pr.(M) # 0.
iel
Remark 2.4.1. The above is essentially the Markov-Kakutani fix point theorem.

Example 2.4.1. In M = T consider f(x) = 2x mod 1,¢(x) = 3x mod 1. Clearly these maps
commute and by the same argument used in example 2.2.3, the Lebesgue measure \ is invariant for
both f and g.
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2.5 Recurrence 27

Observe that there exist other invariant measures, supported on finite subsets. To check this one
can use that if p,q € N coprime, then  — p-x mod ¢ defines an automorphism of Z,; thus if
z € N is coprime with 2, 3 then % is a periodic point for f,g (with period z — 1). Hence,

is both f and g invariant.

Question (Furstenberg). Are the above measures essentially all, in the sense that any v € P+ ((T)N
P+ 4(T) can be approximated by convex combinations of y,’s and \?

This is one of the most famous open questions in ergodic theory. We will say more about this after
developing additional technology, but for now let us point out that Furstenberg proved the following:
if K C T is a compact set that is both f and g invariant, then either K is finite or K = T.

2.5 Recurrence

In this part we’ll establish a very simple but surprinsingly useful result.
Consider a dynamical system 7" : (M, By, i) ©O. For A € 9By denote

Ay ={x € A: Tz € Afor inﬁnitely many n's}

—AﬂhmsupT "A= Aﬂﬂ U T ™A.

n>0 m=n

Since A is measurable, A, is measurable as well.
Theorem 2.5.1 (Poincaré-Gibbs ~ 1900). p(A) = u(Ax).

Proof. We'll give two proofs.

1st proof: define A, := |J'™ T-™A, and observe that Ay D A; D --- A, = T""A,. Since T

m=n

preserves u, p(Ag) = u(A,) for all n, and thus A,, = A, p-a.e. This implies

limsupT™"A = ﬂ A, =4y p-ae.
n>0

= Ao =ANAy=A p-ae.

2nd proof: wolog, u(A) > 0.

1. Notethat3l <n <ny = [ A)]+1 such that ANT " A # (); indeed, the sets A, T A, .- - T-("=YA ...
have the same measure = u(A), thus if they are all pairwise disjoint then

= ]
kz A—nu(A)éngm.

IfT"ANT "R A £ (), then ANTFA # 0.
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28 Measure Preserving Transformations 2.5

2. Let B, :={x € A: #{k: Ttz € A} = n}; necessarily u(B,) = 0, othewise if ;(B,) > 0 then
by the previous part there exists € B, N T*B, for some k > 1. This is a contradiction since
x would have to visit A at least n + 1 times, and wouldn’t be in B,,.

Finally,
A=A\ UB” =A pu-ae.
n>0
|
There is also a topological version of the recurrence theorem. We now assume additionally

that M is a separable metric space, and %, is its Borel o-algebra. No assumptions on the
continuity of 7" are imposed.

Recall: for z € M, its w-limit (for 7)) is

n—o0

wr(z) = {y : 3 (¢(n)), C N subsequence s.t. 7%z —— 4}

We say that x is recurrent if x € w(x).

Corollary 2.5.2. If yp € Pvr(M) then p({recurrent points}) = 1.

Proof. Take {B"} base of the topology of M and let B” := B"\ B”.; by Poincaré-Gibbs’ theorem,
u(B™) = 0, and thus if B := U,,B", then u(B) = 0.

We now claim that every = ¢ B is recurrent: for U € N, there exists some n such that
x € B" C U, and since = ¢ B", there exists (infinitely many) & > 1 such that 7%z € B, c U. In
other words, for every U € N, there exists infinitely many & such that 7%z € U. This implies that
x is recurrent, finishing the proof. [

Corollary 2.5.3 (Birkhoff’s recurrence theorem). Let T': M O be a continuous map of a compact
metric space. Then, there exists a recurrent point x € M

Proof. By Krylov-Bogolyubov P+ (M) # (). Alternatively, there exists a minimal set Y C M, and
every x € Y is recurrent. |

Remark 2.5.1. In hypotheses of the previous corollary, observe that since Pv(M) is separable one
can guarantee the existence of some measurable R C M such that

e v € R = zisrecurrent.

* VYue Prp(M),u(R) = 1.

Definition 2.5.1. Let M be a compact metric space, and T : M ‘O continuous. A Borel set Y € By
is said to be of total probability if for every u € Pvo(M), u(Y) = 1.
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There are more sophisticated recurrence theorems. For example:

Theorem 2.5.4 (Khintchine’s recurrence theorem). Let T : (M, By, pt) O be an endomorphism,
and A € By of positive measure. Then for every € > 0 the set

S:={neN:u(ANT"A) > u(A)* — ¢}

is synthetic.

Recall:. S C Nis syntetic (or “has bounded gaps”) if there exists L > 0 such that for every n € N,
Sn{n,n+1,--- ,n+ L} #0.

We’ll also mention the following.

Theorem 2.5.5 (Multiple recurrence theorem (Furstenberg)). Consider pairwise commuting
endomorphisms T; : (M, By, p) O i =1,--- , k and let A of positive measure. Then there exists
n > 0 such that

p(ANTy"An---T,"A) > 0.

In particular if T* = T* for some endomorphism T, then p(ANT"AN--- T~k A) > 0

Exercises

1. Show that d is a distance on P+ (/) and show that a net (y;); in P+ (M) is convergent in the
weak-star topology if and only if it converges with respect to d.

2. Verify that for any I = [a,b) C [0,1) it holds u(G~'(I)) = u(I), where G is the Gauss map and

_ 1 dzx . . .
dp = TrRETE Conclude that y is G-invariant.

3. An homeomorphism of a compact metric space 7" : M © is almost periodic if is minimal and
{T™ : n € Z} is an equi-continuous family. Show that any almost periodic map is uniquely
ergodic.

4. (x) Let T': M ©O be an homeomorphism of a compact metric space and ¢ € C(M ). Coinsider
K:={ NeR:3wecPrp(M): T 'v=D>\v}.

(a) Show that K is a compact, non-empty subset of R.

(b) Suppose that 7" is uniquely ergodic. Show that K reduces to one point, and find that
point. Hint: iterate the equation 7T~ 'v = \pv.

(c) Conclude that in the uniquely ergodic case there exists v such that 7-'v = v if and only
if [logdu = 0, where 1 is the unique invariant measure for T'.

5. Suppose that 7" : (M, By, 1) O is an endomorphism, and let f € Fun . (M). Show that

f(T"z)

lim sup <0 p-ae(x)

Hint: Borel-Cantelli.
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6. (*) Consider a dense sequence (z,,),>o in [0, 1]. Show that there exists a re-ordering (z¢(n))n>0
that is equi-distributed.

7. (x) Let M, N be compact metric spaces and = : M — N a measurable map. Show that:

(@ 7. : Pr(M)— P+(N) is measurable (if you are stuck see lemma 9.3.5).

(b) If 7 is surjective, then m, is surjective.

(c) Suppose that f : M O, g : N O are continuous maps and r is a semi-conjugacy between
them (7 o f = g o7, 7 surjective). Show that 7| : P+ (M) — P+ ,(N) is surjective.

8. (x) Let M be a compact metric space and 7" : M O continuous. Suppose that there exists
areal valued f € C(M) and r € R such that for every p € P»(M), [ fdp < r. Show that
there exists ny such that for every € M it holds n > ng = A, f(z) <.
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CHAPTER 3

Ergodic Systems

3.1 Ergodicity: definition and basic facts.

Let T : (M, %, 1) © be an endomorphism.
Definition 3.1.1. We say that the system is ergodic if VA € By, T ' A = A implies pu(A)- u(A°) = 0.

Sets such that 7' A = A are called (quite naturally) T-invariant sets (or simply, invariant
sets). Ergodicity amounts to say that every (measurable) invariant set has y-measure equal to
zero or one. If the measure is clear from the context, we simply say that 7" is ergodic. In contrast,
if T is fixed and we want to emphasize the role of 1, we say that ;. is an ergodic measure for 7.

Note. More generally, the definition of ergodicity makes sense also for measures that are not
invariant, but quasi-invariant: this means that T' is an automorphism and T is equivalent to p. In
this case it is often said that T preserves the class of .

Notation. €+g (M) = {u € Prp(M) : p ergodic measure for 7'}. Observe that €»g (M) is a
w* closed subset of P+ (M).

The condition for a set to be invariant is somewhat artificial in the context of measure theory;
it would be much more natural to define an invariant set as one satisfying 7-'A = A u-a.e.
(these are called invariant y- a.e. sets, by the way). We’ll now show that the notions essentially
agree.

Recall:. To be in the same page, let us recall that two subsets B,C € 9By are equal p almost
everywhere (B =,, C) if f( BAC) = 0. Equivalently, 1p = 1¢ p1-a.e..

If A, A" are sub o -algebras of By, we said that they coincide pi-a.e. (A =, A') if for every
A € A there exists A" € A’ such that A =, A’, and reciprocally if B’ € A’ there exists B € A,
B =, B.

We can prove directly the following.
Lemma 3.1.1. If Ais invariant p- a.e. there exists an invariant set B such that A =, B.
Proof. For this, start noting that p : By x By — [0, 1] given by p(A, B) = u(AAB) is a pseudo-

metric on By. Given A = T7'A p-a.e. let B = limsup, T "A. Note that B is T-invariant,

31



32 Ergodic Systems 3.1

and y Poincare-Gibb’s theorem, A,, = AN B = A p-a.e.. We now claim that A, =, B, thus
establishing the Lemma.

By definition, B\ A, C {y € A°: In > 1,T"y € A} = /T "AN A Now T""A\ A C
T-"ANA; by triangular inequality

—_

p(T"AA) < > p(T7FA,T™*1A) = np(A, T A) = 0,
0

i

which shows that 77" A \ A is a null set for every n > 1, which in turn implies B =, A as
promised. u

Corollary 3.1.2. T is ergodic if and only if every invariant y-a.e. set has either zero or total
measure.

It is worth to give a different proof of the previous fact. This will lead us to some useful
considerations. First some definitions.

Definition 3.1.2. If T : (M, B\, p) O is an endomorphism, we define the o -algebra of invariant
subsets and the o -algebra of invariant subsets ji- a.c. by

T=Tr={A€By:T A=A}
T =Jo={Aec By : T 'A=, A}.

It’s easy to check that 7, 7° are o -algebras and by definition, 7" is ergodic if and only if 7 is
the trivial o-algebra {{), M}. The previous Lemma tell us that 7 =, J°, and thus T is ergodic if
and only if 7° =, {0, M}.

Now observe the following: f : M — R is J -measurable if and only if f =T f(= foT). On
the one hand, it is clear that if f = T'f and A = f~1(C) for C € Bg, then T7'A = (Tf)"1(C) =
fYC) = A and f is J -measurable. Conversely if f is 7 -measurable, then for every ¢ € R,
T =1 ({t}) = f~*({t}), which implies that f(z) = T f(z) Vx € M. Arguing analogously we can
verify that f is J°-measurable if and only if f =T'f pu-a.c.

Proposition 3.1.3. Let f € Fun(M) be such that T f = f. Then there exists a measurable function
f satisfying:
1. Tf = f.

2. f=fpu-ae.

Proof. First assume that f is bounded. Note that for every n the function g, = A, f is measurable
(finite) and satisfies g, = f pu-a.e., thus f = liminf, . g, coincides u-a.e. with f. Finally, by
using that f is bounded,
< 1 ™f — <
Tf =liminf =Y T"f = liminf g, + =7 f.
n—oo M 1 n—00 n

If f is not bounded, assume first that f > 0 and for every N € N consider hy = f A N. As
0 < hy < N, by the previous part we deduce the existence of iy that coincides with &y
almost everywhere and is T-invariant. It follows that f := liminfy hy coincides z-a.e. with
liminfy Ay = f, and is T-invariant. By applying this reasoning to the positive and negative parts
of f we finish the proof. [
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3.1 Ergodicity: definition and basic facts. 33

Note. Suppose that f = 14 and consider f given by the Previous proposition; in principle f is not a
characteristic function, but ji- a.e. coincides with the characteristic function of B = {x : f(z) = 1}.
Note also that since f is invariant, T~'B = B. Hence, we can use the proposition above to give a
different proof of lemma 3.1.1.

Definition 3.1.3. We say that f € Fun(M) is T-invariant (or simply that is invariant, if T is
understood from the context) if Tf = f j-a.e.

Corollary 3.1.4. T is ergodic if and only if every T-invariant function is constant p- a.e.

Proof. T is ergodic if and only if 7° =, {0, M}, and as we explained, a function f € Fun (M) is
J°-measurable if and only if is T-invariant. Since the {(), M } -measurable functions are exactly
the constants, our claim follows. [ |

Notation. N, _,, = {0, M }.

Remark 3.1.1. Note that it is enough to guarantee that every bounded invariant function is constant
to guarantee ergodicity, or even for functions in £?,p > 1.

Convention and Warning: In view of the above, from now on we’ll write 7 = J°. This is
common in the ergodic theory literature; nonetheless sometimes (cf. chapter 9) is important to
make the distinction. We’ll worry about this technicality when the times comes.

We end this introductory part by noting that ergodicity essentially tell us that our system
cannot by subdivided into simpler systems.

Proposition 3.1.5 (Indecomposability). The following are equivalent
1. T is ergodic.
2. Ae By, pu(A) >0= u(Up>1T"A) =1
3. A,Be By, (A - w(B)>0=3In>1st. p(T"ANB)>0.
Compare 3 with Poincaré-Gibbs’ Theorem.

Proof.

1=21IfA:= Un>1T~ ™A, then TA C A, and since both sets have the same measure, A =, T-1A.
As T C A, u(A) > 0, hence by ergodicity this set has full measure.

2 = 3 With previous notation, ;(A) = 1 and thus 0 < u(B) = u(AN B) < S u(T™AN B),
which implies that one of the terms of this series is non-zero.

3 = 1 Let A be an invariant set of positive measure, B = A°. Since for every n it holds T""ANB =
AN B =0, necessarily u(B) = 0.
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34 Ergodic Systems 3.2

3.2 Ergodicity of the Irrational Rotation

Let « € R\ Q and consider the rotation 7' =r, : T — T,z — = 4+ o mod 1; recall that A denotes
the Lebesgue measure on T.

Theorem 3.2.1. )\ is an ergodic measure for r,.

We'll give several different proofs of this fact; each one of them can be generalized to some
appropriate context. Not only that, along the way we’ll develop some general facts that will
prove to be useful for what follows.

3.2.1 Proof using Fourier analysis.

Recall that e : T — C denotes the exponential function e(z) = exp(27ix). As explained before,
the set of trigonometric polynomials

T riq = spanc{e,(z) = e(n - z)}.

is C° dense in C (T), and thus 1s 3’2 dense as well. Denoting (f, g) = [ fgd) the £? inner product
we get (€, €m) = [ enml( (x) = 8_m; thus {e, },cz is an orthonormal basis of the Hilbert
space Z2(\). If f € L%(\ )we can write

LY f(k)e(k - )

for uniquely defined (Fourier) coefficients f(k) € C (f(k) = (ex, f)). In conclusion, the sequence
f = {f(k)}rez determines uniquely the £? class of f, hence it determines f \-a.e..

Consider now a T-invariant function f € $%()\): then

F@)E S fkyelk - a)
FT2)E S fk)e(kiz +a) Z f(k e(k - x)

= f(k) = f(k)e(k - o) VEk .-, f(k:)(l — e(ka)) = 0 VE.
Since ka ¢ 7Z for k # 0, necessarily f(k) = 0 Vk # 0. This means that f(x) 3% fo t)dt is

a constant function.

3.2.2 Geometric proof

We start with the following elementary Lemma.

Lemma 3.2.2. r, is minimal

Proof. = € T: by compactness of T the orbit {x,, = 7"z },c7z has an accumulation point p. Using
that 7" is an isometry we get z € {z,}, ., (i.e. x € w(z). Now given y € T, e > 0, there exists n
such that dr(7"z, ) < §, and thus for every £,

ap (T Vg T ) < g
By Dirichlet’s principle, this implies that {7T™*x},, intersects (y — ¢,y + ¢). |
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Note. This also follows from unique ergodicity.

Suppose by means of contradiction that there exists A = T~ A satisfying 0 < u(A) < 1. Take
a density point! z of A4, i.e.

lim AN (z —r,x +7)|
r—0 2r

=1

Using that 7" is an isometry we get that z,, = 7"z € T"A = A is also a density point, and
furthermore there exists r, > 0 such that

0<r<ro=Vn,|AN(z, —r 2z, +71) > 1.99r
On the other hand, by our hypotheses 1(A°) > 0; choose y density point of A° and r; such that
O<r<ri=]ANy—ry+r)>199r.

Now let r = rq A 1 and for a given n let §,, = dr(x,,y). Then

LI99r < [A°N(y — 1y +7)] < AN (2n — 720 + 1) + 26, < 18—0—1—2(5”

This is a contradiction since ¢,, can be chosen arbitrarily small, by the previous Lemma.

3.2.3 Proof using unique ergodicity.

Consider f € $!(T) T-invariant. Given ¢ > 0 there exists g € C(T) such that || f — g/, < e. We
know A,,g =2 ¢,, hence by invariance of A,

n—1
1
1f = Angllsr = [|4nf = Angllsr < — Z/ |f(T*2) — g(T*x)|dA\ () = ||f — glls <€
k=0

Choose n. such that for every n > n, ||A,9 — ¢4||e < €: for those n's it holds || A,g — ¢yls < €,
and thus ||f — ¢yls+ < 2e. We deduce that f is the £! limit of constant functions, and since
convergence in £' implies converge a.e. for some sub-sequence, we have that there exists
(fa)n C LY(T) sequence of constant functions such that f * lim,, f,. This readily implies that f
is constant a.e.

The reader should note that the approximation argument used in the last part does not
depend on the particular form of T'. For reference, we spell it out as a Lemma.

Lemma 3.2.3. Suppose that there exists F C £P(M) a dense set of functions such that for every
f € F, (A.f)n converges in £P to a constant. Then T is ergodic.

3.3 Shifts spaces

We’ll introduce now one of the most important examples in ergodic theory: shift spaces. chapter 7
is dedicated to the study of this type of system; here we’ll limit ourselves to a (very) basic
presentation, so the reader can start getting used to them.

IThese exist by Lebesgue’s differentiation theorem.
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Let S = {1,...,d} be a finite set (the alphabet) and define the spaces

Q(d):SN:{g:xneSVnZO}
QD = 62 — {y: 2, € SYn € Z}

We consider the discrete topology on S and induce the corresponding product topology on
Q@ 0+, These are Hausdorff spaces, and due to Tychonof’s theorem they are also compact.
It is not difficult to show that they are metrizable; a compatible metric is given as follows; for
z,y € O*9 we define

1
oz (2, ¥) = 1

where L(z,y) € NU {400} is
L(z,y) = max{l : x; = y;,|i| <1}

In other words, we consider the biggest (symmetric) “window” where z, y coincide:

T_L-1 \CU—L X "xL‘J7L+1

Y-rL-1 ‘I—L Xt 'xL‘yL—&-l

Likewise for (¥, From now on we restrict our discussion to Q2 = Q*(? since the arguments
for the one-sided space are essentially the same.

For k € N denote S}, the set of words on length £, i.e.
Sp={w=ay---a,:a;,€ S}~ x--- xS (ktimes)
Given i € Z,w € Sy we define the cylinder
[w]i = {z 2 = wo, ..., Tigg1 = We1}

It is immediate that each cylinder is open and {[w]; : w € S,k € N,i € Z} is a basis of the
topology in (2. Since the complement of a cylinder is a finite union of cylinders we conclude
the 2 has a basis consisting of clopen sets, hence it is totally disconnected (=zero dimensional)
space.

Remark 3.3.1. For i = 0 we'll write [w]o = [w]. Note that any cylinder |w]; is finite union of
cylinders [w'], hence {[w]; : w € Sk, k € N} is also a basis of the topology of 2. It also follows that
the set A consisting of finite unions of cylinders is a generating sub-algebra of Bq,.

Finally, given z we construct a sequence (z¥), by defining inductively z¥ = x; for |i| <
k,xf,, # xky1; as 28 —— z we conclude that z is an accumulation point. This shows that (2 is

k—o0

perfect.

Definition 3.3.1. A compact metric space that is perfect and totally disconnected is called a Cantor
space.

Theorem 3.3.1 (Moore-Kline). If X,Y are Cantor spaces, then they are homeomorphic.
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3.3 Shifts spaces 37

The spaces Q9 Q) come with a naturally defined map on them, the shift map : it is given
by
(Uz)n = Tn+1

It’s name is self-explanatory. One deduces directly that ¢ : Q4 © is a d-to-one continuous
surjective map, whereas o : %@ < is an homeomorphism (its inverse is just shifting in the other
direction). Due to the importance of this map, the spaces Q@ O+ are called respectively the
one-sided shift on d symbols, and the two-sided shift on d symbols.

Remark 3.3.2.
cw=ag-ap1 = [w] =Njoa,].
* we Sy = [w); =0 w).

Now suppose that we are given real numbers 0 < p;,--- ,py < 1 satisfying Zé\le p; (i.e.a
probability distribution p; on the set .S). For each k we can define p on the set S; by

N
Iuk(wo ce wk,l) = Hp#{0§i<k’:wi:j}
Jj=1

Since ur = p1 X pg—1, by induction we get that i, is a distribution and the family {py }r>1 is
compatible in the sense that if 7 : Sx.1 — Sy is the projection into the last k£ coordinates, then
Trlke1 = ik We now apply the basic version of theorem 7.2.4.

Proposition 3.3.2. There exists a (unique) probability measure u on €2 such that for every k €
N,w € Si,i € Z it holds

p([wli) = pn(w)
Proof. For k € N,w € Si,1 € Z define

pllwli) = pn(w).

The consistency condition implies that the above extends to a pre-measure u : A — [0, 1]; we
claim that it is o-additive on A, and hence by using Caratheodory’s extension theorem (or
alternatively, Kolmogorov-Hahn’s) it follows that it extends uniquely to a measure on %,.

To check o-additivity take a sequence of pairwise cylinders (A, ),>1 and suppose that A =
U,A, € A. Define B, = A\ U, 4;; then B, € A hence it is compact and B \, (. By
compactness there exists r such that B, = () for all n > r, and thus A = U’_, A,,, A, = () for
n > r + 1. It follows that

T —+oo
pA) = u(An) =D p(An)
n=1 n=1
as we wanted to show. [ |

Definition 3.3.2. The measure p constructed in the previous proposition is the Bernoulli measure of
weights (or initial distribution) p., - - - ,pg. The space Q4 (resp. QYD) equipped with this measure
will be denoted as Ber™(py,- -+ ,pq) (resp. Ber(p1, -+, pa))-
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38 Ergodic Systems 3.4

By definition, p is an invariant measure for ¢ (it is invariant on .A). Here comes another
unsurprising fact.

Claim. p € €rqg(Q).

Indeed, Fi,. = {f : ©* : f depends on finitely many coordinates} is a dense family in £°° ()
(in fact, it is dense in C(2)) and clearly if f € JF.. is o-invariant then it has to be constant.
Therefore, p is an ergodic measure for o.

Note. o : Ber(py, - ,paq) O is much more than ergodic. These systems are the paradigm of a truly
random process. For example, Ber(p, 1 — p) would model the successive trials of the flip of coin that
has probability p of landing head, and 1 — p of landing tails. This is more “unpredictable” that the
system given by successively applying an irrational rotation. Is it not?

3.4 Statement of the Ergodic Theorem and more about ergod-
icity
It is time to state the Ergodic theorem.

Theorem 3.4.1 (Ergodic Theorem - G. Bi{khoff ~ 1931)). Let T : (M, By, 1) O be an endomor-
phism, and f € £'(M). Then there exists f € £'(M) such that

1. A.f e f both pi-a.e. and in L.
n—-+0o0o
2. fis T-invariant p-a.e..

3. IfAe Jthen [, fdu= [, fdu (in particular [ fdu = [ fduw).

Chapter 6 is dedicated to the proof of this and other similar results. For now we’ll assume the
validity of the theorem and use it to obtain some useful consequences.

| Convention. from now on we’ll abbreviate “Ergodic theorem” as ET.

Fix T': (M, By, p) O; for A € By, n € Nlet
C#H0<i<n:T'(z) € A}

h(x) .
Due to the ET, 3lim,, 74 (z) =: 7a(x) for p-a.e.(z) and [ 7adpu = pu(A). Since 74 is T-invariant,
it is clear that
(x) T is ergodic < 74(z) = p(A) p-a.e.(x), for all A € By.

Suppose that p(A) > 0: we claim that 74(x) > 0 p-a.e.(z) € A. Equivalently,

p(r € A:ta(z) >0) = u(A).

If not, there exists B C A of positive measure such that 74|B = 0. Let C' := U,>oT"B. Since
T4 is T-invariant, 74|C' = 0 p-a.e., and clearly C' € 7, thus

OZ/TAdMZ/]lAdMZ/]lAdM:M(B)>0;
c c B
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3.4 Statement of the Ergodic Theorem and more about ergodicity 39

which is absurd.
This is a stronger version of Poincaré-Gibbs’ theorem: not only there is recurrence but the
frequency of visits to the set is given.

Extremality Let VV = (V,Top) be a locally convex topological vector space, K C V' convex.

Definition 3.4.1. z € K is an extreme point of K (v € Exzt(K)) if whenever x = ty + (1 —t)z with
t€[0,1),y # z € K, necessarily t =0 ort = 1.

The following is well known.

Theorem 3.4.2 (Krein-Milman). Let K C V be compact and convex. Then K = conv(Ext(K)),
where

conv(Ext(K')) = smallest closed convex set containing Ext(K)

In particular, Ext(K) # 0.

There is a useful complement to the above theorem, the existence of an integral representation
for elements of K. Let us start with an example.

Example 3.4.1. Consider a compact convex set K C R%, and denote E = Ext(K). In this case one
can check directly (arguing by induction on d) that given x € K there exists F, C F finite (with
#F, < d+ 1) and numbers p(y) > 0,y € F, such that

r=>Y py)y D py =1

yEFy yeFy,

Define pi, := Y . p(y)dy; then p, € Pv(R?) and p,(A) = 0 for every A that does not intersect
Ext(K). Moreover, if p € (R?)* then

o) = Y m@)e(w) = [ ¢+ du
i=0
Observe that in the above example it is only required for ¢ to preverse convex combinations,
rather than to be linear; these are called affine functions. For K C V' convex, We denote
dAff(K) :={p: K — R affine and continuous}
We now state the following version of the powerful theorem of Choquet.

Theorem 3.4.3 (Choquet, Bishop-de Leeuw). Let V, K as in Krein-Milman’s theorem, and suppose
further that K is metrizable. Then for every x € K there exists u, € P+ (V) satisfying:

a) supp(p,) C Ext(K).

b) Forall € dff(K), p(x) = [ pdp,
Proof. Let E := Ext(K); clearly it is a compact metrizable space. Define € : {p|E : ¢ €
dff(K)} C C(E) (with the uniform norm). Observe that € determines uniquely dff(K);

indeed, if ¢, ¢’ € dff(K) conincide on F, then by convexity + continuity they coincide on
conv(FE) = conv(Ext(K)) = K.
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40 Ergodic Systems 3.4

It follows that given an element ¢ € € we can extend it uniquely in an affine way to the
whole K; this extension will be denoted by the same letter ¢. Now = € K determines a linear
functional ev, : € — R by

ev.(p) = »(z)

which has norm equal to 1, and thus ev, € €*. By Hahn-Banach it extends to a functional
EV, € C(E)*, and since EV,(1) = ev,(1) = 1 and E is compact, it follows that EV, is positive.
By the Riesz’s representation theorem there exists a mesure p, € P+ (FE) such that for every
¢ €C C(FE), and thus for p € €

/s@dux =EV,(p): p€€= /s@dux = ev,(p) = ().

We can extend p, to a probability on V' by defining 1, (A) = 0 for every A € By, AN E = 0. With
this definition it follows that if p € df£f(K)) then

pa () = pa(p|E) = ()

This finishes the proof. n

Note. In the above theorem we get from construction that u(E) = 1, but in fact u(Ext(K)) = 1.
We refer the reader to [22] for the proof. We point out however that in the case considered the set
Ext(K) is a G; set, and thus Borel measurable.

To see this consider A : [0,1] x K x K — K, A(A\,z,y) = Ax + (1 — \)y: Ais a continuous map
between compact spaces, hence closed. Then p ¢ Ext(K) if and only if there exists x # y, A # 0,1
such that A(\, x,y) = p. It follows that

1 1
<A<1l1--.4d > —
> ~ nu K<x7y)—n}

S|

Ext(K) = | ] A{(\ z9):

n>1

which implies that Ext(K ) is an countable union of closed sets.

After this interlude in functional analysis let us get to back to ergodic theory.

Proposition 3.4.4. Ext(Prr(M)) = Erg,(M).

Lemma 3.4.5. Assume that u € €vg,(M),v € Pvr(M) are such that v << pu. Then p = v.

Proof. Fix A € By and consider B = {z : 74(z) = u(A)}: by the ET, u(B) = 1, thus v(B) = 1.
Since B =, T~!B it follows again by the ET (applied to v),

,u(A):/BTAdy:/B]lAdu:u(A).
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3.4 Statement of the Ergodic Theorem and more about ergodicity 41

Of proposition 3.4.4. Consider first p € Ext)(P+p(M)), and take A € J. If 0 < u(A) < 1 we
could write,

p=p(A)p(-|A) + p(A°)p(-|A%)
where p(-|A), u(-|A°) are the conditional measures on A, A°. Observe that since A is T-invariant,

_ wW(TBNA) w(T'BNTtA)
Tu(B|A) = u(T7'B|A) = — = (B|A) VB € By,
i.e. u(-|A) € Pvr(M), and similarly for 1(-|A°). This would contradict the extremality of 1, and
hence ;(A) =0, 1.
Conversely, let u € €»g (M) and suppose that we have a convex combination of the form

p=tv+ (1 -t v € Prp(M),0<t <1

Then both vy, 15 are absolutely continuous with respect to . which by the previous lemma implies
that they coincide with x. This shows that 1 € Ext(P#r(M)). |

We now reap the benefits of the theory of extremal points.

Corollary 3.4.6. Let M be a compact metric space and T : M O continuous. Then
Prr(M) =conv(E€rgp(M))

Moreover, given € Pvr(M) there exists a unique Q2 € P+ (€rg,(M)) such that

u(h)= [npanm vrecon ()

Proof. Recall that P+ (M) is a w* compact, convex set in the t.v.s. (M ). The first part is direct
consequence of Krein-Milman’s theorem and proposition 3.4.4 above.

For the second we use theorem 3.4.3 and obtain the existence of a probability measure
P+ (€rg,(M)) such that for every p € M(M)*,

p(p) = / w(n)dQ(n)

Observe that C(M) — Jl(M)* via evaluation: for f € C(M) we get ¢ : M(M)* — R s.t. p(v) =
v(f). From here we deduce the existence part of (1): uniqueness follows since C(M) C JM(M)* is
separating. |

The last part of the above theorem () is called the Ergodic Decomposition Theorem. If is often
used to simplify work: one first proves the desired statement or theorem for ergodic measures,
and then by some (often simple) argument together with (f) gets the result for every invariant
measure.

Let us also note the following.
Note. For p,v € €vg (M) then either
* uluv or

.u:y
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42 Ergodic Systems 3.5

Indeed, if v # p then there exists some mble. set A s.t. u(A) # v(A). Let

X o= {a: male) = u(A))

and observe that by the ET, (X ) = 1,v(X) = 0. Hence u L v.

Example 3.4.2. In general, €+g (M) is not closed. Consider the following simple example taken
from [9]: let M = T? T(x,y) = (x,x+y); then T is an homeomorphism that preserves the Lebesgue
measure \ on T (by Fubini). For n > 1 define

n—1
1
n==3_0
Hn = L (3.5)

Clearly p,, € €vgq,(M): however u, — "4 5o x A, which is not ergodic (T|{0} x T is the identity).

n—-4o00

3.5 Uncountably many singular measures of full support

We'll finish this Chapter giving the following application of the ideas that we have been discussing.

Theorem 3.5.1. There exists a continuum of measures i, € P ([0, 1)) satisfying:

1. t £t = py L .

2. uy has full support for every t (i.e. u; is positive on open sets).

3. 12 = A the Lebesgue measure.

4. u; is non-atomic.

Denote [ = [0,1), M = {0,1}"- and let p : M — I,

Xz
plz) =) 50

n=1

Let T : I — I be the doubling map T'(z) = 2z mod 1, Iy = [0,1), /1 = [3,1).

27

Io I

= o(z) == T (1,,).

n=1
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3.5 Uncountably many singular measures of full support 43

Claim. ¢ is continuous, surjective, and

M—2=M

T

[ ——1

Everything is clear except (maybe) continuity; if dy/(z,y) < 5 then z; = y;Vi = 0,--- ,n,
hence

n

1
p(z), ¢(y) € (1T*(L,) + has diameter < o
i=0

This shows that ¢ is continuous (Lipschitz).

Forn € N,,0 < j <2"—1letI;, := [&, L). Then by induction,

0 () = go_l<ﬁT_k(Iai)> a; = (j mod 2"") mod 1
i=1

o

I
IDE

ai] — [CLl? e JGTL]‘
1

.
I

Now fix 0 < p < 1 and let v, be the Bernoulli measure on M of weights p, 1 — p; as we saw
before this is an ergodic measure for o, thus p # p' = v, L v,
Define 1, := ¢u,: then {1, }o<p<1 is a family of mutually singular measures on /.

Claim. each p, is positive on open sets and without atoms.

The first part follows from (1% ,,) = v,([a1,- - - ,a,]) > 0. To check that ;, doesn’t have any
atoms it suffices to establish that the Bernoulli measure v, is without atoms. Fix z € M and
define C,, = [z1,--- ,x,]. Each C, is a closed set and for every n,C,, D C,,;;. Thus,

vp({z}) = lim v, (C,) = lim p™ (1 —p)*™ =0

n—o0

since x has either infinitely many zeros or ones.
L = \(I;,,), which implies that ; = . The proof of

Finally, note that if p = ; then 1 (I;,) = 35

the theorem is complete.

Note. I've learned the previous application from A. del Junco.

Remark 3.5.1. It is easy to verify that ¢ is two-to-one, and is one-to-one precisely on X° where
X := {z : z ends on infinitely many zeros or ones} = ¢~ ({T"(0)},>0)

In particular, Y0 < p < 1, v,(X) = 0 and furthermore ¢ : (M, o,v,) — (I,T, 11,,)) is a conjugacy in
the following sense.

Definition 3.5.1. Let T : (M, B\, i) O, S : (X, Bx, i) O be two measurable dynamical systems.
Amap ¢ : (X, Bx) — (M, By) is a semi-conjugacy (notation: ¢ : (X, S,v) — (M, T, n)) if
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44 Ergodic Systems 3.5

1. v =p.

3. It holds
X—2.X
ol
ML M

If furthermore ¢ is an automorphism (i.e. it has a measurable inverse), then it is called a
(measurable) conjugacy between S and T.

In the first case we say that (T, i) is a factor of (S, v), and in the later we say that the systems
are conjugate or isomorphic.

Observe that if (7', 1) is a factor of an ergodic system then it is ergodic. Conjugacies are simply
measurable change coordinates, and a central problem in ergodic theory is to determine and
characterize isomorphic systems. Most basically, one is interested in the following:

Question. Given (T, i), (S,v): are they isomorphic?

The fact that we are allowing measurable conjugacies makes the problem very delicate. For
example, we have seen above that the expanding map 7" : x+ — 2z mod 1 with the Lebesgue
measure is isomorphic to the process obtained by flipping a fair coin, although these system look
(in principle) very different.

Question. Are the shifts on Ber(%, 3),Ber(s, 5, 3 ) isomorphic? What about Ber(}, 1, 1, 1) and

1 11
29 373

The answer to these question will lead us to the famous concept of entropy in Chapter 8.

Let us finish by noting that as byproduct of our discussion we obtained that \ is a ergodic
measure for the expanding map 7; this of course extends vis-a-vis to any expanding linear map
in T by using the appropriate shift space.

In any case, one can prove directly the ergodicity of \. One possibility is using Fourier analysis
(exercise item 1); here is another (taken from the monograph of Conze and Raugi [ 1. Consider
any bounded T-invariant function f : [0,1) — R and define g(x fo |f(x+1t) — f(t)|dt; g is
continuous. Also, note that by periodicity, for every «,

flz)=f(2"%) = f(2"c+m) = f(z + 2%) Vm € N,.

which shows that g vanishes on the dense set of dyadic numbers, and thus is zero everywhere.
On the other hand,

/01|f /f )| dt = // o))l df — // it

by Fubini

1
< / g(t)dt =0 = f is constant a.e.
0
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3.5 Uncountably many singular measures of full support 45

Example 3.5.1. Let T': © — 2z mod 1 in T. Since T has an ergodic measure of full support T is
transitive (it has a dense orbit), and thus if f € C(T) is invariant, then it has to be constant. On the

A+ . . . . . .
other hand ;1 = # is an non-ergodic, non-atomic invariant measure for T with full support. This
shows that in the definition of ergodicity we cannot replace “every measurable T-invariant function
is constant” by “every continuous T-invariant function is constant”, even for nice measures.

Exercises

1. Use Fourier analysis to show that the Lebesgue measure is ergodic for the expanding linear
map x — 2x mod 1.

2. Suppose that A C 9By is an algebra and let 7" : (M, %Bn, ) O be an endomorphism.
Assume that there exists a constant C' > 0 such that 7-!(B) = B implies

p(A) - u(B) <C-u(ANB) vAe A

Show that (7', ;1) is ergodic.
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CHAPTER 4

Algebraic Systems

The purpose of this chapter is to introduce additional examples where to test the machinery
that we are developing. We’'ll discuss automorphisms of the torus first, and then we generalize
to systems coming from Lie groups actions. Their importante is two-fold: on the one hand
these examples are ‘simple’ enough that we can make computations, while on the other they are
versatile and have a broad range of applications, both in ergodic theory and in other subjects.

4.1 Endomorphisms of the Torus

Let T¢ = R?/Z¢ be the d dimensional torus, and denote by 7 : R? — T the projection
m(z) = [z] =2 mod Z<.

It is well known (and simple to check) that 7 is a covering projection, so R¢ is the universal cover
of T¢.

Recall:. For a manifold (or a CW-complex) M denote by G,, = w1 (M, p) the fundamental group of
M at p, and consider the universal covering 7 : (M, p) — (M, p). Then G, ~ 7*(p) on the right by

x - g = terminal point of the lift g of g such that §(0) = z.
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_If f+ M — M is continuous, then for every q € 7= 1(fp) there exists a unique lifted map
f:(M,p) — (M,q) such that mo f = fom. Denoting by f4 : G, = Gy, the induced action, it holds

YV € M,Vge Gp, flx-g)= f(x)- fu(g)

Back to T?, consider a continuous function f : T¢ — T? and let ¢ € [0, 1) be the unique point
such that 7(c) = f(0). By the discussion above there exist a unique lifted map F' : R? — R? such
that F'(0) = ¢, which we will consider fixed from now on.

Note that m(T¢,0) ~ Z? is abelian, hence we can identify canonically Vo € T4, 7, (T¢,0) =
7(T9, z). We further identify 7, (T%,0) = Z? via [e; : [0,1] — T9 ~ (0,---,1,--- ,0) where

ei(t)=(0,--+,t,---,0) (in the i’th position).

Using this identification, the action Z¢ ~ T¢ is given by z - n = 2 +n mod Z<.

Denote by A := fy : Z% — Z%. Then A is an homomorphism of Z¢, and thus its action is given
by a square matrix of integer coefficients. By an usual abuse of language we write A € Mat,(Z),
ie.

Av)=A-v, veZh

In particular A extends linearly to a map A : R? — R? with A(Z%) c Z% hence A induces
fa: T4 — T9 by the formula

fa(z) =[A- 2]
Now consider ¢ : R? — R?, p(x) = F(x) — A - z; then ¢(0) = ¢ and for every z € R?,n € Z¢,
lx+n)=Flx+n)—A-(x+n)=(F(z)+n)—(A-2+A-n) =px).
Hence ¢ is Z? periodic (and in particular, bounded) and
Fz)=A z+ p(z).

On the other hand, if F(x) = B - z + ¢(z) where B € Mat,4(Z) and ¢ is Z¢ periodic, then for
every z € R,

p(z) —¢(xr) = (A= B)-x

and since the left hand side is bounded, necessarily A = B and then ¢ = ). We have established
the following.

and a

Proposition 4.1.1. If f : T — T? is continuous then there exists unique A € Maty(Z)
[0, 1)%.

Z%-periodic function ¢ : R* — R? such that F(x) = A -z + ¢(z) is a lift of f with F(0) €

Remark 4.1.1. If A in the theorem above is invertible (i.e. A € GL4(Z)) then f and f4 are
homotopic.

Indeed, using the notation above, the map g = f'f has a lift given by G = Id + A, and
hence gy = Id : Z* — Z°. Since RY is contractible, all induced actions on the higher homotopy
groups gy : m,(T%,0) — 7,(T9, g(0)) are also the identity, and thus by the Whitehead theorem g is
homotopic to the identity. We deduce that f, is homotopic to f.
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4.1 Endomorphisms of the Torus 49

Definition 4.1.1.

* €nd(TY) = {f: T¢— T? continuous group homomorphism}
o dut(T) = {f € €nd(T?) : f invertible}

Fix f € 6nd(T") and note that since 7 : RN — TV is a (continuous) homomorphism, by
uniqueness F' : RY — RY is homomorphism as well. This implies that F(x) = A - x for some
A € Maty(7Z) (F preserves Z%) and thus f = f4.

The discussion above implies that there exists a group isomorphism ¥ : dwt(T¢) — GL4(Z)
given by U(f4) = A. If we equip dut(T?) with the C° distance and GLy(Z) with the operator
norm (which gives the Euclidean topology on GLx(Z)) then W is an homeomorphism.

4.1.1 Volume element in T*

Consider the constant d-form w = dz' A ---dz? € Q¢(R?Y) and note that (obviously) Vg €
R, Lyw = w, where L, denotes the translation by g. In particular

Ve € RELVn € Z%,  wypn = wy

hence w induces a volume form w € Q4(T4).
Let 1, be the probability measure on T¢ induced by this form w. We claim that 1, is invariant
under translations, i.e. Vg € T% (L,).pw = - To check this we compute

h e C(TY) = (Ly)uio(h) = pu(ho Ly) = /

TN

hoLyw= / ho Ly(n(x))dz' A---da?
RN

I
N

honm(x+g)dz' A---da? since L,([z]) = [z + g]
d

hom(x)da' A---dz? since the Lebesgue measure is L, -invariant

We deduce that 4, is the Haar probability measure on T? (see the next Section).

Proposition 4.1.2. It holds deg f4 = det A, where deg f4 is the topological degree of f4 : T¢ ©.

Proof. The map f, is differentiable, thus fjw = deg f4 - w, and since f4 = m o A we have
deg fa-w= fiw=(roA)w=A1T"w=A"dz" A---dz? = det Adz' A ---da?.
[ |
Remark 4.1.2. For every z € T? we can identify T,T? = R¢ canonically; in this identification

D, fa = A(Dm = Id) and thus if A € GL4(Z), then every x € T% is a regular value of f.. We deduce
that f4 is | det A|-to-one everywhere.
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4.1.2 Automorphisms of the Torus
Consider A € GL,(Z) and denote its spectrum by sp(A), i.e.
sp(A) = {\ € C: det(A — A\Id) = 0}.
For )\ € sp(A) we consider its generalized eigen-space
EY={veC’: (A—-\d)' v=0, for somei € N}
and define
B {E§? NR4 AeR
(Ef @ ES)NR? XeC.

Now consider

[Al>1
Es = @ E\

[Al<1
E° = @ E\

Al=1

By Jordan’s theorem, R? = E* @ E° @ E*.
Remark 4.1.3. Since det A = +1, either R? = E° or E* and E* are non-trivial.
Definition 4.1.2. We say that A is partially hyperbolic if E*, E* # {0}, and we say that A is

hyperbolic if E° = {0}.

Let ¢ > 0 be such that sp(A|E*® E*)N{A € C:1—¢e < |\ <1+ ¢} =0and write A in its
canonical Jordan (complex) form

J A 0 1
J(C — J. = + *. .
4 ; ! Aj 0 1
g A 0
We start considering the case when J§ = J (i.e. only one Jordan block) and let {e;,- - ,eq} be
the canonical basis. Then
J@l = )\61
<]62 = )\62 + e

Jen = Neg + eq—1
Now define v, = ey, vy = €€y, - - - v4 = €9 ey in this basis

A 0 1
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We can make similar changes of basis for every Jordan block; joining all these bases together we
end up with a basis of R%. As a consequence of the previous construction we deduce that A is
conjugate to a block matrix

Ji
Ja = . ( real canonical form)
Ik

where each J; of the form

A 0 1
J = ve|l 0 | =Dy+eN ifAeR
A 0 1
A 0
or
o b1
B\
J = +e S . Lo =F,+eN' iflxeR
B, 0 {0 1}
- O -

where O is the zero two-by-two matrix and By = [ /] if A = a +if.

Claim. |[N], [N']| < 1 and m(B,) = || Bl = |AL
The first part is direct; for the second consider v = (vy,v;) € R? and note

[ Bxv| = [A[ - [v].
From the claim above we deduce Vv (of the corresponding dimension) it holds
Vn,  (IAl = &)"[lv]] < [[T"0] < (]Al + €)™ [|v]]
and since the action of A on F), is conjugate to the action of J (A|Ey = PJP~!) we finally deduce

Corollary 4.1.3. There exists C' > 1 such that for every n € Z,v € E,,

1 n n n
cUAl =€) lvll < |A™]| < CAL +€)" o]l

4.1.3 Linear Anosov diffeomorphisms

From the previous Corollary and by our choice of ¢ are able to deuce
Corollary 4.1.4. Assuming that A is hyperbolic, we have the characterization

E*={v:||A™| —— 0}
n——o0o

pdcarrasco@mat.ufmg.br



52 Algebraic Systems 4.1

Proof. In this case R? = E* @ E* and for every \ associated to E*, |\ + €|" — 0, while for
n—-—+0oo
every )\ associated to E, |\ + ¢|* —— 0. From here follows. |

n——oo
See the exercises for a characterization of E*, E* in the partially hyperbolic case.
We fix an hyperbolic matrix A and observe that £%, E* are (fully) invariant, i.e. A(E®) =
ES, A(EY) = E*. Let
W*(z) =z +7n(E*) x = s,u.

and consider the partitions F* = {W*(x)},cre, * = s,u. Using that 7 is a (smooth) covering
map it is easy to check that these are foliations of T? called respectively the stable and unstable
foliations of f4. Note also that these are invariant under f:

faW(z)) = W (fa(@)).
Finally WW* W are transverse, meaning that for every z € T?, T,W?(z) & T,W"(z) = E* & E" =
R,
Let us record the following.

Lemma 4.1.5. w|E* : E7 — W*(0) is injective.

Proof. Let us work with E* (the arguments for E* are analogous; alternatively use that EY =
E%_,). By the characterization given in corollary 4.1.4 the set E* is an additive subgroup of RY,
thus it follows that £* N Z" is an A-invariant subgroup of R. Since every vector v € E satisfies
lim,, A"v = 0, necessarily E* N Z? = {0}.

Now if z,y € E*,n(z) = n(y) then z — y € E* N Z¢ which implies = = y. [ |

4.1.4 Periodic points

Suppose that A does not have eigenvalues that are root of the unity and take x € Per(f4). Then
there exists n € Z, m € Z% such that

A"z =z +m=~ (A" — Dz € Z°

Since 1 is not an eingenvalue of A", the matrix A" — [ is an invertible with integer coefficients,

hence by Cramer’s formula (A" — I)~! € GL4(Q). This implies that z € Q¢ N T<.

Conversely, consider = = (2, ... ,2¥) € Q¢ N T% then by taking common denominator in

0 an
the components of x we can write x = %y where ¢ € Z,y € Z%. Consider

1
I,={-a:acz2%
q

and note that I, is a finite (#I', = ¢") subgroup of T¢. Since A has integer coefficients it induces
a permutation in I'j, which in turn implies that every element in I', is periodic. We have shown
the following.

Proposition 4.1.6. Suppose that A does not have any root of the unity as an eigenvalue. Then
Per(fa) = Q¥ NTY. In particular f4 has a dense set of periodic points.

Let us use give an application.
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Proposition 4.1.7. Assume that A is hyperbolic. Then, for every x € T? the leaf W*(x) is dense
x = s, u. In other words, the foliations VWW*, W" are minimal.

Proof. We'll show first that A = c1(W*(0)) = T¢; it suffices to show that A is open. To check this
take y € A and consider a small open neighborhood U of y. Using that WW* " are transverse
foliations one deduces that there exists ¢ > 0 such that

dpa(z,y) < €= #W*(z,e) NW"(y,e) =1

where W*(x,€) = x4+ m(D*(0,¢)), W"(y,e) = y + m(D"(0,¢)) are local plaques. The diameter of
U is chosen to be much smaller than e.

Now take p € U periodic point of period m (f%'(p) = p) and define z, = f4™(z). By invariance
zn € Wo(f™(p)) N WH(f3™(0)) = W*(p) N W*(0) and the distance d(z,,p) converges to zero
as n — oo, by corollary 4.1.4. We deduce that p € A. This way we have shown that every
periodic point in U is also contained in A. Hence by using density of the periodic points,
UCcl(U)Ccl(A) = Aand A is open.

Finally, for every z € TV we have W*(x) = x + W*(0), which implies that W* is minimal.
Similarly, WW* is minimal. [

4.1.5 Ergodicity of Toral Automorphisms

In this part we fix f4 € Aut(T?) and denote by p = p,, its Haar probability measure. For k € Z4
we denote by e, : T¢ — S the map

er(x) = exp(2mi(k, z)).

Each e, is a character (i.e. a continuous homomorphism into S'). We denote
(T?)" = {x : T? — S* continuous homomorphism}

Clearly (T?)" is a group under pointwise multiplication.

Remark 4.1.4. (T%)" is isomorphic to Z¢; the only continuous (in fact, measurable) characters are
the €.

Proof. Let x1, x2 € T x1 # xo. We claim first that y; L y» in £2(T9): indeed

e = [ Tl xale)de = [ eta) xale e vpeT
=X1(¥) - x2(¥) (X1, x2)

Note X, (z) - x2(x) = ﬁg;, so taking y such that y;(y) # x2(y) we obtain that necessarily

<X17 X2> = 0.
Now given y € (T¢)", by taking its Fourier expansion we deduce that x = e;, y- a.e. for some
k € Z4. Since Y, e, are continuous, they coincide everywhere and x = e, [
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By the Stone-Weierstrass theorem, spanq{ej.}rcze is dense in C(T?). The map f. induces
£ (TY" © by requiring f(ex) = ex o fa, Yk. We compute

er(fa(z)) =ex(A-x) sincee,om =eg
exp(2mi(k, Az)) = exp(2mi(A*k, x)) = ea+(x)

hence under the isomorphism (T¢)" ~ Z? the map f, is given by f; = A*(= A7) : Z¢ — 7. We
remind the reader that sp(A*) = sp(A).

Now take ¢ € %?(T9) an f, invariant function and proceed as in the first proof of the
ergodicity for the irrational rotation, namely

o) £ Y apen(a)

kezZN

o(fa(@) E Y arean(n)

kezZN

and hence by uniqueness of the Fourier coefficients, for every k € Z" it holds a;, = a4-. Fix k
and use the previous equality to deduce |ax| = |aa+x| = - -+ = |aa=yi| = - - - for every n € Z: by
Bessel’s inequality

o0
> agasyl® < [[@lls < oo

There are two possibilities for k& # 0:
1. 3n > 1 such that (A*)"k = k.
2. ap = 0.

In the first case 1 € sp(A*)") = sp(A") = {\" : X € sp(A)}, and thus there exists A € sp(A) that
is root of the unity; if this doesn’t happen then necessarily we are in the second case for every
k # 0 and ¢ is constant - a.e.

Proposition 4.1.8. The following are equivalent.
1. fa is ergodic with respect to the Haar measure.
2. The eigenvalues of A are not roots of the unity.

3. For every k # 0 the orbit { A"k}, is unbounded.

Proof.

1) = 2) Suppose that 3\ € sp(A) such that \?» = 1 for some p > 1. Note that B = A? — | € Maty(Z)

is not invertible, thus det B = 0 which implies that B : Z" — Z" is not injective. We
deduce that there exists k € Z" \ {0} such that A0k = k. Define

P(x) = er(r) +e iy () + - - e g1y (@)

and note that ¢ is measurable and f, invariant, while not constant. Thus f, is not ergodic.

2) = 1) Follows from the discussion before the Proposition.
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2) < 1) Clear.

Example 4.1.1. Consider the matrix

000 -1
010 8
A= 001 -6
001 B8

Then A € SL4(Z) and its characteristic polynomial is pa(t) = t* — 83 + 61 — 8t + 1. We seek the
roots of pa(t): since p4(0) # 0 we can write

8 1 1 1
pA(t):0<:)t2—8t+6—¥+ﬁ:0<:>(t+¥)2—8(t+¥)+4:0

From here (after some simple computations) one verifies that sp(A) = {\* A%, A}, \?} where |\"| >
1,|A°| < 1,|\Y| = |X?| = 1. Furthermore \*, \*> = \I are not roots of the unity (Arg(\') € R\ Q). It
then follows that A is a partially hyperbolic; note that A|E° is simply an (irrational) rotation, in
particular an isometry. We thus deduce that f is an ergodic automorphism that is not Anosov. The
following theorem is much harder to prove.

Theorem 4.1.9 (F. Rodriguez-Hertz 2005). There exists U C Diff**(T*) open neighborhood of f4
such that if g € U and g preserves volume, then g is ergodic.

Now suppose that f4 is an ergodic automorphism. We claim that A is partially hyperbolic:
to see this suppose that £* = {0} = £, and therefore sp(A) C S'. The next algebraic Lemma
finishes the argument.

Lemma 4.1.10 (Kronocker). If A € GL4(Z) is such that' sp(A) C D then every A € sp(A) is a root
of the unity.

Proof. We'll give two proofs. Write sp(A) = {1, -, Aa}-
1st proof: For every n € N, tr(A") = Zﬁvzl A7 € Z. Using compactness of (S')? and since
A € sp(A) & X = 1 € sp(A) we deduce the existence of a sequence (n;); such that

(AT ) = (1,0, 1),

It follows that ¢r(A™) = A" + -+« + A} — N, and since (tr(A™)), C Z, for large [ necessarily
—00

A"+ -+ Ay = N. Using that each \}* has norm less than equal to 1 we finally get that \}* =1,
forj=1,...,N.

2nd proof: Consider the set of characteristic polynomials o€ = {pa~(t) : n € N} C Z]t]. The
coefficients of an element in %¢¢ are obtained by applying the symmetric functions (of degree
less than equal to V) on its roots, i.e. on the set Root = {\] :n € N,j=1,..., N}. Since we
are assuming Rootl C {z € C: |z| < 1} we deduce that the coefficients of the elements in Po¢

D={zeC:|z| <1}
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are bounded integers, and thus ¢ ¢ is finite. This in turn implies that R oo is finite, hence for
every j there exists n < m such that

Af= AT = AT =1
and ); is a root of the unity. |

Assume now that f, € dut(T) is ergodic (hence A is partially hyperbolic) and consider the
(non-trivial) decomposition RY = E* @ E° @ E*. Denote by £%* = E* @ E* and argue as in the
hyperbolic case to deduce that F** = {W"(z) = x + 7n(E*")},cra is a foliation on T¢.

Claim. W** is minimal

Proof. Since W*(z) = x + W*(0), it suffices to show that £ = cl(W“$(0)) is equal to TV. By
the characterization of E*, E*, E° given in the exercises one deduces that F is a subgroup of T%.
Since compact connected subgroups of T? are known to be torii, we deduce that F is a sub-torus
of TV. By the form of lattices in RY, the above implies that there exists B = {vy,--- ,v,} basis of
E consisting of integer vectors, i.e.

E = m(spang{vy, -+ ,v,.})

Note also hat £ is f, invariant, hence spang{v,--- ,v.} is A-invariant. Using Gaussian elimina-
tion we thus obtain 7', P € GL,4(Z) such that

T =PAP ! = [F G}

O H

where '~ A|E. Since sp(T') = sp(A), T does not have any root of the unity as an eigenvalue.
This implies that H is not present in the decomposition, because H is an integer invertible
matrix that has all its eigenvalues of norm = 1, and therefore has eigenvalues root of the unity if
non-trivial. We deduce that 7' = F, and thus £ = T. [ |

Using the above claim is not too hard to show (exercise 1) the following.

Corollary 4.1.11. Let X C T¢ be a measurable set that is union of leaves of F**. Then u(X) €

(0,1},

4.2 Lie Group Actions

Now we discuss Lie Group actions on nice (homogeneous) spaces. In principle, in this course we
are interested only of actions of R or Z, but sometimes these appear as part of a larger action
G ~ M (if ¢ € G we ccan consider the cyclic group < g > acting on M), which gives a more
solid framework. This part will also serve as an introduction to Ergodic Theory for more general
groups; as reader can guess however, this a huge topic and here we’ll only scratch the surface.

Conventions. If G is a group then H < G means that H is a subgroup of G. The indentity
element of G will be denoted by 1 or 1. For g € G we denote by L,, R, : G ©O the maps
given by left and right multiplication by ¢ respectively; however if there is no risk of confusion
we’ll write Ly(¢') = g¢', Ry(¢') = ¢'g. Furthermore, if X is a space then G ~ X could mean
either a left or a right action. In the case where G is a Lie group and X is a differentiable
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manifold, the notation G ~ X in this part means that G acts by diffeomorphisms and that the
map G x X 5 (g,z) — gz € X is continuous.

Consider a Lie group GG and I' < G a discrete subgroup. Then I' ~ G by left multiplication,
and we can construct the orbit space

X=IN\G={zx=Tg:9€G}

We equip X with the quotient topology and denote by 7 : G — X. The following is standard (see
the Appendix).

Proposition 4.2.1. The map = is a covering map?, and hence X inherits the smooth structure from
G.

Note that for any g € G the map R, descends to a diffeomorphism R, : X — X. With this it
follows that any subgroup of G induces dynamics on X: if H < G we have a left action H ~ X
given by

h-Tg=Tgh™" (~h-z=Ry1(x))
which the reader can verify to be continuous. Natural questions would be then:
* what do H-orbits look like?

e What are the H-invariant measures?

Remark 4.2.1. The first (type of) question doesn’t appear in the classical setting: orbits are either
points, circles or lines (the last two possibilities appear only if G = R). In general however; there are
many possibilities for the orbits G - x (= G/stab(x)), particularly if G is large.

4.2.1 Haar Measures

Denote by R« -d (X) the Radon measures on X, and recall that we are denoting by J((X) the set
or finite Borel measures on X. We’ll now generalize the notion of invariant measure an ergodic
measure.

Definition 4.2.1. Let yx € M (X).

1. pis H-invariant if for every h € H, R = p. We denote Rad (X)) the set of H-invariant
measures.

2. wis H-quasi invariant if for every h € H, Ry ~ p.

Note that we are not insisting that invariant are finite when talking about group actions.
We have the following useful lemma (see the exercises):

Lemma 4.2.2. The measure u € Ra-d y(X) is ergodic if and only if for every measurable function
f € Fun(X) satisfying

Vhe H, f(h-z)= f(z) p-ae.(x) (4.1)

we have that f is constant - a.e..

2In fact 7 : G — X is principal I'-bundle
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Functions satisfying the previous equation are (understandably) said to be H-invariant.

Definition 4.2.2. An inviariant positive measure y € Ra-dc(G) is called a (right) Haar measure.

Theorem 4.2.3. For any Lie group G there exists a measure u¢ such that

giajdlg(G) = {)\;LG A > 0}

Proof. Existence of j is easy. Take any inner product (-, -); : T1G x T;G — R and define
v,w € T,G = (v,w)y = (DRy-1|yv, DRy-1 | w);.

It is an exercise to verify that {(-, -),},e¢ defines an invariant Riemannian metric on G, and thus
the volume form ¢ associated to this metric is invariant by right translations, hence a (right)
Haar measure. Note that the distance function induced by this metric is right invariant, and in
particular

B(g,r) = Ry(B(1,7)) (4.2)

Now we will establish that any other (right) Haar measure v differs from ¢ by a positive
constant. To do so we will prove that

* v is absolutely continuous with respect to jg.

* The Radon-Nikodym derivative i—”G is yg - a.e. constant.

Observe that after we have established the absolute continuity, the second part follows from
Lebesgue differentiation Theorem (applied to pg!): for ug-a.e.(g) we obtain

dv ’ 1 / dv v(B.(g9)) . v(B(1))

—(¢) = lim —dyug = lim ——5 = lim ——~
a6 =P we(B@)) i e " T PR na(Bo(a)) ~ + (B, (1)
where in the last equality we have used eq. (4.2) and the invariance of v, ji.

The previous discussion also gives us a lead on how we establish absolute continuity. For
g € G define

sy Y B9 v(Bi(1)
o) =l B )~ I e (B.())

As Haar measures cannot have atoms, v({1}) = 0, and hence there exists R > 0 such that for
every 0 < r < R we have v(B,(1)) < co.

. v(Bgr(1))
Claim: 6(9) < oy

To see this take a decreasing sequence (r,,) such that for every g € G we have

L WBL) _ . v(BL)
o9) = B 9) o (B ()

Suppose first that a < oo and fix § > 0. Consider the family

v(B:,(9))
e (B, (9))

= a.

F ={B,.(9): B.(9) C B, (1), >a—0}.
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By Vitali’s covering lemma there exists a disjoint countable family {B,,},, C F such that
pa(Br(1)\ U,, Bm) = 0. Hence

v(Br(1)) > Y v(Bn) > (a = 0)pua(Bg(1))

which implies the claim if « is finite. If « = oo we substitute a — ¢ by M with M arbitrarily large
and reach by contradiction that v(Br(1)) = +oc.

The claim readily implies that v << ug: if ug(A) = 0 take € > 0 and choose balls C, Cy, . ..
of of sufficiently small radius and such that

* 2iha(Gi) <e
Then
| v(Ba)
(A<D 1C) < pe(Br(1))  es0 .

i
|

The proof of the previous Theorem uses an useful fact about Lie groups which we record here.

Lemma 4.2.4. If G is a Lie group then there exists right and left invariant metrics d.,, d, compatible
with the underlying topology.

Convention. Unless otherwise specified, from now on we will assume that G is equipped with a
left invariant metric dg = d.

Remark 4.2.2. Observe that the left action G ~ G that we are considering is
g — Rg—l.

and hence . is a right Haar measure if it is invariant under this action. Likewise we define a left
Haar measure as a measure invariant under the (left again) action

g+ Ly.

Take p € Rada(G), g € G and observe that g € Rad(G), hence there exists A(g) € Ry
such that gu = A(g)u. One readily verifies that A(g) does not depend on y, and that the function
A : G — R, defines a continuous homomorphism.

Definition 4.2.3. The function A is the modular function of G. The group G is unimodular if
A=1.

In other words, G is unimodular if any left Haar measure is also a right Haar measure, and
viceversa.

Example 4.2.1.

1. The group (R",+) is unimodular (the Haar measure is just the Lebesgue measure). More
generally, any Abelian Lie group is unimodular.
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2. If G is compact, then G is unimodular. This follows since A(G) is a compact subgroup of

(R, *), hence A(G) = {1}.

3. Consider the (orientation preserving) affine group of R, namely

G:{{g 11)] :a€R+,b€R}%{(a,b):aeRJﬂbGR}

with the product (a,b) - (¢,d) = (ac,ad + b). We claim that the measure dy = da - db

is right

a
invariant. To check this, we consider f € C.(M)G and show that for every g € G we have

/fngu /f ) dp(X

(4.3)

Write X = (z,v),g = (h, k) and denote by m, : G — R the projection in the first coordinate.

Then, by the change of variables Theorem

dxdy f(X) .
/f ) /m]()()dxdy

where j(X) denotes the Jacobian of R,-1 at X. We compute g~ = (h™",

Ry-1(z,y) = (zh™', —xh~ 'k + y), which in turn implies

h=t —h7'k

T

} = j(X)=h""

(4.4)

—h~'k) and thus

(4.5)

Substituting the values of j(X) and 7, (R,~1(X)) = zh™! in eq. (4.4), we verify eq. (4.3) and

hence right invariance of .

Similarly, L,+ = (h~'z,h~'y — h='k), its jacobian is j(X) = (h™")? and m,(L,1(X))) =

xh~Y, and thus

[ a0 anx) = [ o0 au(x),

We conclude that G is not unimodular. Note that A(g) = h™".

Remark 4.2.3. If u € Radq(G) then v = % is left invariant.

4.2.2 Haar measure on homogeneous spaces and Lattices

We return to the setting where G is a Lie group, I' < GG discrete and X = I'\G.

Definition 4.2.4. Measures j1x € Ra-dc(X) is called a Haar measures on X.

For general homogeneous spaces we cannot guarantee the existence of Haar measures.

However, we have the following.

Theorem 4.2.5.

1. If Rada(X) # 0 then Radg(X) = {Aux : A > 0} for some measure px.
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2. The set Rad(X) is non-empty if and only if A|r = 1.

Example 4.2.2. Let G be the affine group of R discussed before, and consider the discrete subgroup

e {[0 W) nez)

Then A([eg ?]) = e ", and thus A|r # 1. We conclude that X = I'\G does not have any Haar
measure.

Definition 4.2.5. A discrete subgroup of a Lie group I' < G is a lattice if X = I'\G carries a
(necessarily unique) Haar probability jix. If furthermore the space X is compact, then the lattice I'
is said to be co-compact.

Not every Lie group admits lattices. In fact we have the following:

Proposition 4.2.6. If " < G is a lattice then G is unimodular.

Proof. By theorem 4.2.5 A|r = 1, hence there exist a continuous map ¢ : X — R, such that
A = ¢ omy. The probability v = ¢,ux is invariant under the subgroup A(G), and this readily
implies that A(G) = {1}. |

The converse of this Proposition (unimodular Lie groups admit lattices) is (as far as I know)
still open. However we have the following

Theorem 4.2.7 (A. Borel). If G is a linear semi-simple unimodular group, then G admits co-compact
and non co-compact lattices.

Example 4.2.3.

1. The affine group of R is not unimodular, hence it does not admit any lattice. Observe that it
does have non-trivial discrete subgroups.

2. The subgroup SL,(Z) < SL,(R) is a (non co-compact) lattice (c.f [Lattices], hence SL,(R) is
unimodular. See also exercise

When n = 2 the depicted shaded region in figure 4.1 is a fundamental domain for the
action of SLy(Z) ~ SLy(R), where the identification of the borders is achieved by the maps
2z +— —1/z,z + z + 1. The resulting homogeneous space X = SLy(Z)\SLy(R) is called the
modular surface.

The measure of X corresponds to the measure dy = dr;fy (see the end of Section 4.3.2).

4.3 Dynamics of the geodesic and horocyclic flow on PS1,(R)

We'll present now concrete examples of homogeneous dynamics. To do so we’ll recall some basic
facts of hyperbolic geometry.
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———

z—» z+1

-1 -1/2 1/2 1

Figure 4.1: Fundamental domain for the modular surface.

We will work with the upper-half plane H = {z € C : Im(z) > 0} equipped with the hyperbolic
metric

| dz|
(Im(z))

and with the Poincaré disc D = {z : |z| < 1} with its corresponding hyperbolic metric

2 _
dsg =

2| dz|
1=z

2 _
dsp =

The (inverse of the) Cayley-transform 7 : D — H, T(z) = i1 is a bi-holomorphism, and it is

1—2

easy to check that 7* ds% = ds?. Therefore, the surfaces (H, ds%) are holomorphically isomorphic
(conformally equivalent), and thus we can use the models interchangeably. For example, using
the disc model one checks without any trouble that this is a complete surface of constant sectional
curvature K, = —1.

Let us recall the following.

Theorem 4.3.1 (Schwartz-Pick Lemma). If f : D — D is holomorphic and z € D, then

1—[z?

Equality implies that f is Mobius.

Here are two direct consequences.

1. If f: D — D is holomorphic (f € H(ID)) then it is a weak contraction of the hyperbolic
metric:

Vz,weD dp(fz, fw) <dp(z,w)

Equality at some z # w implies that f is a Mobius transformation.
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2. Every element in Aut(D) = {f : D ©: f bi-holomorphic} is a Mdbius transformation.
Indeed, take any z # w € D and note

dp(z,w) = dp(f(f7"2), f(f'w)) < do(f 'z, [ 7'w)) < dp(2,w),
therefore we have equality and by the previous part f is Mobius.

Denote the set of Mobius transformations by Jlc6. Since the Cayley transform is also a
Mobius transformation we deduce.

Lemma 4.3.2. Aut(H) C JMlo6.

Now we use the upper-half space model. Given a 2 x 2 (complex) matrix A = {Z b} , it

defines the transformation M, : C ©O given by

az+b
Malz) = cz+d

The condition for M, to be non-constant is precisely det(A) # 0: in this case M4 € JMob.
Multiplying the coefficients of A by a non-zero complex number yields the same A4, hence we
can assume det(A) = 1, i.e. A € S1,(C). This way we have a map I" : S1,(C) — JMlo6 which by
direct computation it is verified to be a surjective group homomorphism. As ker(I') = {£Id}, we
can identify

Mob = S15(C)/{£Id}

Definition 4.3.1. The special complex projective group is
PS1,(C) := S1,(C)/{tId}.

The special real projective group is
PS1,(R) := S1,(R)/{£Id}

Remark 4.3.1. Why “projective”? The Riemann sphere can be identified with the complex projective
line PC! with the identification

z

¢ :PC' 5 C [z:uw]—
w

If M4 € Mot it induces the projective transformation M, : PC! ©
[z :w] = [az+b:cz+d].

It is well known that Mobius transformations preserve the set of lines and circles in C, and
that they are fully determined by their action on three distinct points (infinity allowed). With
these facts is not hard to prove the following.

Lemma 4.3.3. A € PS1,(C) preserves H iff A € PS1,(R).

In virtue of lemma 4.3.2 we then have:
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Proposition 4.3.4. PS1,(R) = Aut(H).

For A =[2}%] € PS1,(R) we note

M (z) = CZ;
( +d)21m(z) = M} dsgy = dsgy.
Im(Ma(2)) = g

In other words PS1,(R) C Isom™(H,ds%), the set of orientation preserving isometries of the
hyperbolic plane. In fact these two sets coincide.

Theorem 4.3.5. PS1,(R) = Isom™ (H, ds%)

Proof. Let f € Isom™(H,ds%),~ € H and define A := jacobian matrix of f at z. Comparing with
the usual inner product one checks that 4/ Iinm((;g) - A is an orthogonal matrix (with determinant

one), and thus if of the form [*¢ ~s"¢]  From here we deduce that f satisfies the Cauchy-

sin@ cosf

Riemann equations, which implies that f is holomorphic. By proposition 4.3.4, f € PS1,(R). W

Remark 4.3.2. It follows that the complete isometry group Isom(H, ds) is generated by {PS15(R), -z},
for if f is an orientation reversing isometry, then —f € PS1,(R).

4.3.1 Geodesicsin Hand D

We start with the following definition:

Definition 4.3.2. A non-euclidean line is either
1. Avertical semi-line in H perpendicular to the x-axis, or
2. a semi-circle in H with center in the x-axis.

The set of non-euclidean lines will be denoted by N,

r

AR

l l r

Figure 4.2: Possible non-euclidean lines.

It follows that W}, is invariant by the elements of PS1,(RR), and the natural action PS1,(R) ~
Nyyp 18 transitive.
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Notation. For z € H,v € C(~ T.H) we will denote by ~,, the geodesic such that ~,,(0) =
2,7.,(0) = v. For a non-euclidean line L the points /(L), () are defined in fig. 4.3.

It is an exercise to show that the curve ¢t — e’ - ¢ minimizes the distance between points in the
y-axis, and thus
’Vi,i == €ti.
We now can use the action PS1,(R) ~ W, and conclude, using theorem 4.3.5, that W}, C
{traces of geodesics of H}. In fact, those sets are equal.

Theorem 4.3.6. W, = {traces of geodesics of H}.

Proof. It is no loss of generality to restrict ourselves to geodesics v, , with |v| = 1. Take one
of such geodesics and consider the non-euclidean line L passing through p and tangent to v.
Observe that L is well defined: if v is vertical this is obvious, otherwise consider the straight line
which passes through p and is perpendicular to v, and let O be the point of intersection of this
line with the z-axis. The semicircle centered at O with radius |O — p| is the aforementioned L.

r

[N

l l r

Figure 4.3: Possible non-euclidean lines.

Consider the M6bius transformation M ! sending I(L) — 0,p + 4,7(l) — oo; necessarily M !
sends L to the vertical axis, whereas M ~!(R) is a line passing trough 0 that is perpendicular to
oy. It follows that M~} (R) = R and M = M, for some A € PS1,(R).

We know that M is an isometry by theorem 4.3.5, and in particular M(; ;) is the geodesic
passing through p with tangent vector M’(p). But note that M(; ;) is a parametrization of L (with
unit speed), hence M’(p) is the tangent to L at z, i.e. M’(p) = v. This shows that M (v, ;) = 7.,
and in particular v, , is a parametrization of L. [

During the proof of the previous theorem we have also shown that the action PS1,(R) ~
T\H = H x S! given by

A+ (2,0) = (Ma(z), My (2)v)
is transitive. We readily compute the stabilizer of (i, ):

1. ‘;i’is:iéa:d,b:—c.
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2. (Ciid)2i:i:>—C2+d2+26di:1=>a2—b2:1’ab:0.

Thus b = ¢ = 0,a = d = 1, and the stabilizer is just the identity. By the orbit-stabilizer theorem
we conclude.

Proposition 4.3.7. There exists a smooth PS1,(R)-equivariant® identification T\ H =~ PS1,(R). A
point (z,v) € T1H is identified with the matrix A such that M,(i) = z, M/,(i) = v.

We conclude this part obtaining the corresponding geodesic flow in PS1,(R). Note that

]

uaOfu0) = Gieie = |7 S [}

(the x denotes action) and moreover, if Ax (i,4) = (z,v) then A% (7;:(t),7:(t)) = (V2w (t), 7% (1))-
Thus

) t/2 0 )
(Y (1), 72,0 (1) = A {eo e—t/Q} ’ m ‘
We conclude:

Lemma 4.3.8. Under the identification PS1,(R) ~ T H the geodesic flow is given by

et’2 0
g:(A) = A [ 0 et/Z] .

Horocycle flow There are two other important flows related to g;, which we now describe. For
(z,v) € T'H we define its stable and the unstable sets as

We(z,v) = {(z',v) : tlim du(g:(z,v),9:(2',v")) = 0}
=00
Wu(zv U) = {(Zlv Ul) : thm dH(Qt('za U)v gt<z/7 Ul)) - O}
——00
The stable and unstable horospheres are the projection of the corresponding stable/unstable set
on H. From the fact that PS1,(R) ~ T1H by (essentially all the) isometries we get:

Lemma 4.3.9. The action PS1,(R) ~ T1H permutes stable (unstable) sets.

To determine all (un)stable sets it suffices then to find the (un)stable sets of one particular
point and apply the action.

(Un)Stable sets of (i,i): We start with the stable set. Note that if (z,v) € W?*(i,) then
necessarily v is vertical and pointing to co. Moreover g; preserves the distance in the vertical
(flow) direction, so Im(z) = 1. This implies that (z,v) = (z +4,4), 2z € R. On the other hand, all
such points are in W*(i, i), i.e.

W(i,i) = {(x +i,i),2 € R}.

The corresponding stable horosphere is just the horizontal line passing through i. To find
the unstable set, we note that the Mobius transformation ¢(z) = = preserves the vertical line
through 7 but reverses its orientation. Thus we get that

W (i, i) = (W(i,i)) = T.C
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Figure 4.4: Horospheres of i.

where C is the circle 2% + (y — 3)? = 1.
It is now easy to find all the stable-unstable sets: we just need to apply the action of PS15(RR).

We then see that the stable horosphere of (z,v) is either
* a horizontal line passing through z is v is vertical and points to oo, or
* a circle containing z tangent to R in [ or r (depending on whether v points to [ or r)
and perpendicular to v. Note that in this case the center of the horosphere is uniquely
determined as the intersection point of the vertical line through the point of tangency with

R and the line {z + Av : A € R}.

The unstable sets (horospheres) can be characterized analogously. Do it as an exercise.

Figure 4.5: A stable horosphere corresponds to several geodesics.

We will suppose that (un-)stable sets are oriented with the usual conventions, namely:

* for a horizontal line the positive direction is left to right and normal vectors are positively
oriented if they point up (i.e. to o).

* For a circle the positive direction is counter-clockwise and normal vectors are positively
oriented if they point towards its center.

Note that this choice of orientation is consistent with the PS1,(R) action. We parametrize the
horospheres with unit speed.

3Thus, the action PS1,(R) ~ Ty H corresponds to left matrix multiplication.
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Definition 4.3.3. The stable horocycle flow is the flow (u;); : T\H — T, H defined by

u(z,v) =parallel transport of v along its stable horosphere to the point
at distance t of z.

The unstable flow (v,), : TyH — T1H is defined similarly.

Remark 4.3.3. The use of u, for denoting the stable horocycle flow is traditional, and I won’t dare
to change it here. Hopefully also, there won’t be any confusion with v; (unstable horocycle flow) and
v (unit vector).

Note that

v(z,v) = —u_y(z, —v). 4.7)
Lemma 4.3.10. Under the identification PS1,(R) ~ T H the horoycle flows are given by

w(A) = A B ﬂ

w(A) = A E ﬂ

Proof. We proceed as in the proof of lemma 4.3.8. Note that
o . . 1t o
u(i,1) = (1 + t,4) = [0 1] * (1,1)
which implies the first part of the Lemma. For the second part, observe that the matrix
0 —1
]
satisfies J * (i,i) = (i, —i). It follows that if (z,v) = A % (¢,7) then —(z,v) = (2, —v) = AJ * (i,1).
Using equation (4.7) and the first part, we finally get

v(2,0) = —t4(z,—v) = — (AJ B ﬂ ) (z’,z’)) —AJ B ﬂ T (ii) = A E ﬂ v (,1).

Vt(Z,V)

ug(z,v)

Figure 4.6: The stable and unstable horocycle flows.
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4.3.2 Further properties of the geodesic and horocyclic flows.

In the previous section we have seen that g;, u;, v; are “algebraic flows” on PS1,(R): their action
is just multiplying on the right by an appropriate matrix. We will exploit this here to obtain
interesting consequences. We start noticing the following lemma, whose proof is a simple matrix
computation.

Lemma 4.3.11. For all t,r we have
gt © Uy = Ue—ty O Gy (48)

Gt © Up = Vety O G¢ (49)

Corollary 4.3.12. For any r fixed

lim g;owu,o0qg_;=Id (4.10)
t——+o00

lim ¢;owv, 0qg_; =Id. (4.11)
t——o0

i.e. the geodesic flow renormalizes the horocycle flows, and the speed of renormalization is exponential

Consider the following 1-parameter subgroups of S1,(R),

G = {g)} = Het: 62/2] te R} (4.12)

U= {w(D)} = {B ﬂ te ]R} 4.13)

V= {u(D)} = {E ﬂ te R} (4.14)
and their corresponding Lie algebras,

g = span{Xg = :162 _?/2” (4.15)

3 = span{Xu — 8 é}} (4.16)

om0 ) -

By a (hopefully) harmless abuse of language we will also consider G, U,V as subgroups of
PS1,5(R).
We can use equations (4.8),(4.9) to deduce

IDgi(a)]| = el acu
I1Dg:(B)|| = €'[|3]] Bev

Note that TPS1,(R) = PS1,(R) x R? (any Lie group is parallelizable) and using the (obvious)
identification R® = u & g & v, we get:

Lemma 4.3.13. The geodesic flow is hyperbolic.
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Remark 4.3.4. Observe that PS1,(R) is not a closed manifold; however the extension of the concept
“hyperbolic flow” to open manifolds is pretty straightforward (albeit, maybe not standard).

We will now stablish a simple but very useful (and conceptually important) decomposition of
S15(R).

Proposition 4.3.14. The group S1,(R) (PS15(R)) is generated by the subgroups U, V.

Proof. Fix A € S1,(R). Observe that multiplication on the left (right) by elements of U U V/
corresponds to elementary row (column) operations. Hence there exist Xq,...,X,,,Y1,... Y,
elements of U UV and d # 0 such that

d 0
X, X, A Y, Y, = (0 1/d)'

It suffices then to observe that

o a2 Al Pl =

Corollary 4.3.15. For any A, B € PS15(R) there exists a path consisting of stable-unstable segments
joining them, meaning: 3 Cy,...,C, € U UV such that

B=A-Cy---Cj.

Remark 4.3.5. In Partial Hyperbolicity the possibility of joining any two points by an stable-unstable
path is known as accesibility.

On this topic, note:

(X, Xo] = 2X,, (4.18)

and in particular by the Frobenius theorem, the distribution PS15(R) x u & v C TPS15(R) is not
integrable.

Figure 4.7: The bracket of X, and X,,.
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We conclude this part proving that the flows (g;), (ut):, (v¢); are conservative. Consider the
product measure dQ2 = d\ x df on T*H = H x S*, where d\ = yi dx A dy is the Riemannian area

on H and df is the Lebesgue measure on S'. The measure dS) is the Liouville measure on 7'H.

Fix A € PS1,(R) and denote A™' = [2}]. Then Im(La1(2) = gy, and since L), 1(z) =

= ]Im L 1(Z 2. Consider f € C.(H) and compute

1 . . . . . . 1
erape it jacobian is equal to j(z) = P

LaX(f /f (Az) Imz dLeb(z /f Im LA NE )dLeb(z) = A(f)

hence L\ = A. We use the coordinates (z,0) on 71H, and note that the action of A in the
0 coordinate is just a translation (because L4 is complex differentiable its action on vectors
amounts to only rotate them). This implies that df2 is invariant by A.

Lemma 4.3.16. The Liouville measure is invariant under the action PS1,, (T)'H.

From this we also deduce:

Proposition 4.3.17. The Liouville measure on PS1,(R) = T'H coincides with the Haar measure.

Proof. By the previous computations we get that the Liouville measure is invariant by multipli-
cation on the left by elements of PS1,(R). On the other hand, it is well known that PS1,(R) is
unimodular (therefore left Haar measures = right Haar measures), and the claim follows. [ |

Corollary 4.3.18. The flows g;, us, v; are conservative.

4.3.3 Ergodicity of g;, us, v,

We now consider the geodesic and horocycle flows induced on homogeneous spaces of PS1,(R).
Here we will study their ergodic properties (with respect to the Haar measure). Fix then a
homogeneous space X = I'\PS1,(R) where I' < PS1,(R) is a lattice. The following is clear.

Lemma 4.3.19. The geodesic and horocycle flows induce corresponding conservative flows g;, u;, v,
on X.

For A € PS1,(R) let Uy : H = L?(X, ux) O be the Koopman operator, Uy (f) = f o Ra, and
consider U : PS15(R) — U(H) the map A — Uy,; U is a unitary representation of the group
PS1,(R) (cf. Appendix B) and we seek to use it to prove ergodicity of the flows. This type of
technology (unitary representations) works very well when the group is Abelian, but alas, this is
not our case. Arbitrary unitary representation for non-abelian groups are much harder to deal
with, so here we’ll not pursue generality.

Fix a unitary representation p : S13(R) — U(#H) (the difference S15(R) vs PS1,(R) won'’t
matter).

Lemma 4.3.20. Let A, X € S1,(R) satisfying lim,, ;oo A" X A™" = Id and suppose that f € H is
such that pa(f) = f, then px(f) = f as well.
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Proof. We compute, using that p4--(f) = f and that p is a unitary representation,

lpx (f) = fll = llpxa—=(f) = fll = [[panxa—n(f) = fl m 0 by SOT continuity
= [lpx(f) = fll =0.

Corollary 4.3.21 (1). Suppose that f € H is pa-invariant, for every A € G < S15(R). Then f is
invariant under the full group S1,(R).

Proof. Use the renormalization results of corollary 4.3.12 together with the fact that S1,(R) =
(G,U, V). |

Corollary 4.3.22 (2). The geodesic flow g; : X — X is ergodic for the measure jix.

Proof. Apply the previous Corollary to U : S1,(R) — PS15(R) — U(£2(X, ;1)) to deduce that any

G invariant function is invariant by the whole group S1,(RR), therefore constant. [
Next we consider the horocyclic flow.

Proposition 4.3.23 (Mautner’s phenomena). If f € H is px invariant for every X € U then f is

S15(R) invariant.

Proof (Margulis). By Corollary 1 above, it suffices to show that f is G invariant. Define then
T :815(R) = Rby T'(A) = (pa(f), f); it is direct to check that f is G invariant iff 7'|G is constant
(= ||fII». By SOT-continuity of p, T is continuous map; on the other hand if A = [g dQI} we
define for each n € N, the matrices

B L s

Then b,,c, € U, and bya,c, = [}, 194] — A. Thus T'(b,a,c,) — T(A); but since f is U
n—oo

nH— oo

invariant,
T(bnancn) = (Pvyance (f): ) = (pa, (), [) = T(an) m Hf||2

We conclude that T'|G is constant, as we wanted to show. [
We then get:

Corollary 4.3.24. The horocycle flows u;, v, : X — X are ergodic for the measure jix.

Remark 4.3.6. Note that for establishing the ergodicity of the geodesic and horocycle flows on X we
didn’t have to assume that X is compact.
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4.3.4 Important example: hyperbolic surfaces.

Let G be a Lie group (or topological group) acting effectively and continuously on a (Haussdorf,
or at least T) topological space X.

Definition 4.3.4. The action G ~ X is said to be properly discontinuous if for every compact
K C X the number of g € G satisfying g - K N K # () is finite.

Example 4.3.1.
1. If G is discrete then G ~ G is properly discontinuous.

2. The action Z ~ S* generated by a rotation R, is properly discontinuous if and only if o € Q.
Here is an important fact of subgroups of PS1,(R).

Theorem 4.3.25. H < PS15(R) acts discontinuously on PS1,(R) if and only if it is discrete.
See [3] por the proof.

Definition 4.3.5. A Fuchsian group is a discrete subgroup H < PS1,(R) that acts without fix points
on H. Thatis, A€ H,z € Hthen My(z) =z = A= Id.

By the previous theorem, H is Fuchsian if and only if acts properly discontinuously on H.
Given a Riemann surface X, it is a consequence of the uniformization theorem that X can be
identified (conformally) with the orbit space I'/ X, where

* X is either C, C or H;
* I'is the Deck transformation group of X =5 X[~ m(X)).

If X = C then necessarily I' = {1} and X = X. On the other hand if X = C then I' consists
of Euclidean isometries, therefore is isomorphic to {1},Z or Z?, hence X is either C,C — {0} or
T?2. All other cases correspond to the case where I' consists of isometries of H, thus I' < PS1,(R).
Note that I' ~ X is properly discontinuous. We have shown:

Theorem 4.3.26. If X is a Riemann surface of genus g > 2 then there exists a Fuchsian group I so
that X ~ I'/H.

Since the identification PS1,(R) ~ 71H that is equivariant under the PS1,(R) action, we
can identify 77 X ~ I'/PS1,(R), therefore M = 77X is an homogeneous space. Under this
identification the geodesic/horocyclic flows are given as

t/2

9:(F'A) =TA [60 6—(1):/2] (4.19)
1

w(TA) = TA {0 ﬂ (4.20)

w(TA) =T A E ﬂ 4.21)

4.22)

In spite of their innocent appearance, the reader should not assume that the dynamics of
these flows is “simple”.
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Exercises

1. Prove corollary 4.1.11

2. Consider M = T?. For a vector w = (wy, ...,wy) let R,, : M O be the traslation R, (x,- - ,x4) =
(11 + wy, -, 24 +wg) mod Z<. Similarly, consider the flow ¢¢ = Ry,. Clearly R, ¢%
preserve the Lebesgue measure \ € P+ (M).

(a) Prove that (R, A) is ergodic if and only if {wy, -+ ,wg, 1} is independent over Z, that
is
d
anwj+nd+1, n; GZVJinJ:OVJ
j=1
(b) Prove that (¢¢,w) is ergodic if and only if {wy, - -- ,w,} is independent over Z.

(c) Prove that R, (or ¢¢ is minimal if and only if is transitive.
(d) Prove that (R,, \) is ergodic if and only if it is uniquely ergodic.
Put everything together to deduce:

Theorem (Weyl-Von Neumann). The following conditions are equivalent.
i. (R, ) is ergodic.
ii. {wi, - ,wa, 1} is independent over Z.
iii. R, is uniquely ergodic
iv. R, is transitive.
(e) Sl‘ipp%éelst altn{?}gl-' -+ ,wy, 1} is independent over Z. Show that given ¢ > 0 there exists
integers m,nq, - - - ,ngy satisfying

|mw; —ny| <eVi=1,--- d.

(D) If H c T? is a closed subgroup, then it is known that there exists k < d,V C R?
subspace and I' C V lattice such that £ ~ V//T". Moreover, there exist vy, - -- , v, € R?
such that

I'=2Zv + - Zuy.

Prove that vy, - - - , v4 can be taken with integer entries.

3. Show that Aut(D) = {¢.(2) = == : a € D}.

l—-az °
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CHAPTER 5

Spectral Properties

Consider a (separable) Hilbert space # and denote
B(H)={A:H — H : Aislinear and bounded}

the (Banach) algebra of bounded operators of H. Unless explicitly stated otherwise, %B(#) is
assumed to be equipped with the operator norm

IA[ = | Allee = sup [[Az]l5.

x| <z

An important property to remember from this norm is the fact that for A, B € B(H), || AB|| <
| Al - || B]|. The algebra %(H) comes with an additional structure; given A € %(H) there exists a
unique linear map A* : ‘H ©O defined by the following property:

Va,y € H, (z, Ay) = (A", y).

It follows that A* is bounded and ||A*|| = ||A||; A* is the adjoint of A. The map * : A — A*
satisfies the following:

* rA+ B*=7A*+ B* for every A, B € B(H),r € C (x is anti-linear)
e (A=A
» AB* = B*A*
° [ ATA] = |47
These properties imply that () is what is called a C* -algebra. One verifies directly that
ker(A*) = c1(Im(A)).
Let us also recall that U € 9B(H) is said to be an isometry if for every x,y € H,
(Uz,Uy) = (z,y).
It’s immediate that if U is an isometry, then U is one to one, and moreover ||U|| = 1.

Definition 5.0.1. A surjective isometry is called a unitary operator. We denote
UH) ={U : H O, U unitary}
Note that if U € U(H) then U~ = U* € B(H).
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Spectrum Denote G(H) ={A € B(H): A € B(H)}.
By the open mapping theorem, if A € %B(#) is invertible on the whole #, then A € G(H).

Definition 5.0.2. The spectrum of A € B(H) is
sp(A) :={ e C:A- XN ¢g€EH)}.
The following is the central fact about this set.
Proposition 5.0.1. sp(A) C C is compact and non-empty. Furthermore, sp(A) C (0, | A[])
See [2].

Now suppose that A € G(H): if A € sp(A) then A # 0and A — M\ = —(MA)(A™! — A1),
which implies that A™! € sp(A~1), hence |\!| < ||A||~'. We then deduce

1y 1
sp(A) CA(JATH T Al ={z€C: AT S 2 < (A1}

Observe also that sp(A) = sp(A4*).

Corollary 5.0.2. IfU € U(H), sp(U) C S*.

Definition 5.0.3. Two unitary operators U € U(H),U’ € U(H') are said to be unitarily equivalent
if there exists ® : H — H' invertible linear map that preserves inner products, and furthermore
bolU=U"09.

An spectral property for a unitary operator is one that is invariant by unitary equivalences.

For example, the spectrum is a an spectral property (surprising, no?). This is a good moment
for reminding the reader of the Spectral Theorem for unitary operators (cf. Appendix A).

Projections Let us recall some basic facts about orthogonal projections. A linear map P € %(H)
is said to be a projection if

P =P =P
In this case Im P < H is closed, and therefore Im P 1 ker P.
Proposition 5.0.3. If K < H then there exists a unique projection Py € H such that ker Px = K.
Now given A € B(H) an isometry, there is the following polar decomposition:

A=UQ U eU(H),Q projection.

5.1 The Koopman operator

Let T : (M, By, 1) O be a measurable dynamical system, and we assume some minimal regularity
condition of the o -algebra to guarantee separability of £2(u).

Definition 5.1.1. The Koopman operator associated to T is U = Ur : £*(u) O defined by
Uf=Tf(=foT).
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Since T preserves measure, U is an isometry; if furthermore 7" is an automorphism then U is
unitary.

Observe that U has at least A = 1 as an eigenvalue, corresponding to the constant functions
(whose set will be denoted as C C %?). Ergodicity of T is equivalent to 1 being a simple
eigenvalue of U, and thus

Proposition 5.1.1. Ergodicity is an spectral property.
Even for ergodic maps, U can have other eigenvalues.

Example 5.1.1. Consider a = (ay,--- ,aq) € R? and define the (d-dimensional rotation) R, :
T? © by R.(r) =z +« mod Z% It is immediate that R, prserves the Lebesgue (Haar) measure \
on T?. As an exercise, the reader can check that

N€BGrgy (TY) & (k,a) ¢ Z Vk € Z' ~ i, -+ ,ay,1 are independent over Z.

(if d = 1 the previous condition is just irrationality of o). Fix one of such ergodic maps and observe
that if e, (x) = e(2mi(n, x)) is the character corresponding to n € Z%, then

Ue, = e,(a) - e,
i.e. A = e,(«) is an eigenvalue of U with corresponding eigenfunction e,. In particular, we observe
1. The set of eigenvalues of U is dense in S', and it is a subgroup.
2. The set of corresponding eigen-functions is dense on £2(\).
3. Eigenfunctions corresponding to different eigenvalues are orthogonal.
We’ll now analyze these properties.
Denote by

Eigen(U) = {eigenvalues of U} C S.

Proposition 5.1.2. Suppose that T is ergodic. Then Eigen(U) is a subgroup of S', and every
eigenvalue is simple.

Proof. Observe first that if A € Eigen(U) then there exists f € ¥? of modulus equal to one such
that Uf = Af. Indeed, U|f| = |f|, hence by ergodicity it has to be y-a.e. constant = ¢ # 0,
therefore % satisfies our claim.

Take g with Ug = \g another eigenfunction corresponding to A. Then

I\ _uf _ f
Uly==L=2=
(g) Ug g

)

which by ergodicity implies that g is a multiple of f, and therefore A is simple. Now take f, g
with Uf = \f,Ug = ~¢ and proceed analogously to obtain U(g) = %g, i.e. \y7! € Eigen(U),
hence this set is subgroup of S*. [ |
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Example 5.1.2. Suppose that T is ergodic and that 1 # \ = ¢*™® € Eigen(U). Then there exists
f: M — S' ~ T such that U f = f + . This eigenvalue equation can be written then as

xX-T.x
f f
T— T

and thus the measure v = fu is r,, invariant (and ergodic), hence
* a € R\ Q, vis Lebesgue.
* a € Q, then supp(v) is finite.

In both cases T has an ergodic isometry as a factor.

Let us give some additional definitions.

Definition 5.1.2. For T : (M, B, p) O define

L7 i i=cl(span {f € L*(n) : f eigenfunction of Ur})

g’12",com‘, = (g’lz"ﬁdisc)J-
We say that T has

1. discrete spectrum if T is ergodic and £?(u) = <2

T,disc®

2. continuous spectrum if £2 . = C.

T,disc

In example 5.1.1 we’ve shown that (irrational) translations on torii have discrete spectrum.
Note that having continuous spectrum implies in particular that 1 is a simple eigenvalue of U,
hence T is ergodic.

Sistems with discrete spectrum are relatively simple to study, and not difficult to construct.
Consider for example G a countable subgroup of S* and denote M = G*. If we equip G with
the discrete topology then M is a compact group (this is consequence of theorem B.1.1) and if
z: G — S, it is obviously a character, hence an element of M. Define T': M — M, T(x) = x + 2
the traslation; 7" is an homeomorphism preserving the Haar measure on M. We also know that
M* = G, so we can think g € G as a function on M; not only that, G € &¥?(M) constitutes an
othonormaal basis (cf. remark 4.1.4). On the other hand,

Ur(g)(x) = g(x +2) = 9(x)9(2) = g - 9(x) = Ur(g) = g - g(-).

This shows that 7" has discrete spectrum and Eigen(U) = G.
In fact the following holds.

Theorem 5.1.3 (Halmos-Von Neumann). Let T : (M, By, p) O, S : (N, By, 1) O transformations
with discrete spectrum (M, N Lebesgue spaces), and suppose that Eigen(Ur) = Eigen(Us). Then T
and S are measure theoretically isomorphic.

In particular, if T has discrete spectrum then it is conjugate to a translation acting on a compact
Abelian group.
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From the hypotheses one deduces directly that Ur, Us are unitarily equivalent, say by a map
O : L%(M) — L?(N). The bulk of the proof is establishing that & is of the form &y = ¢ o R for
some R : M — N. Details can be found in page 328 of [8]. It is important to emphasize that
in this setting (discrete spectrum) the operator U completely determines the dynamics of the
system.

We'll use now some of the machinery developed in Appendix A to understand better the
sets £2 ..., %2 .. We remind the reader the simple fact that eigenvectors of unitary operators
corresponding to different eigenvalues are orthogonal, hence in particular the set £2, has an
orthonormal basis {f,} with Uf,, = A\, f.. If f € £2,..., we can write f = }_ a,f, and thus
Uf =), a,\, fn. Hence, denoting by v the spectral measure corresponding to f (and similarly

for the other elements),

2y(k) = / vy = (U ) = (3 @ S anf) = S A i

n n

which implies that vy = >~ ]a,|*d,,, and in particular is purely atomic. Conversely, suppose that
[ € £*(u) is such that its spectral measure is purely atomic, vy = 3 v, with v,, = r,,4,,. Since
v, << vy, there exists g, € H, such that v, = v, , and r,, = ||g,||*. We can compute

(Gn, Ugn) :/zdyn = /z'rndd%(z) :fyHgnH2

which implies by the converse of Schwartz’ inequality, Ug,, = 7,¢,. We conclude that g, € £2 , ,
and thus f € £2 . since f =" g, (compare the Fourier coefficients of both spectral measures).

T,disc

We have established the following characterization.
Corollary 5.1.4.

L2 oo = 1 € £* : vy is purely atomic}
gQ

T,cont

= {f € 2£?: v; is continuous}.

5.2 Mixing

From the previous discussion we see that the behavior of the spectral measures can be used to
deduce dynamical information. Let us recall that if v € %+(S") then it can be written (uniquely,
of course) as

V= Vp+ VUsc+ Vac

where v, is purely atomic, v, is without atoms singular with Lebesgue, and v,. is absolutely
continuous with respect to Lebesgue. The next definition is begging to be made.

Definition 5.2.1. We say that an ergodic transformation T : (M, By, 1) O has absolutely continu-
ous spectrum if for every non-constant f € £2, v; is absolutely continuous.

Suppose then that T has absolutely continuous spectrum and fix f € Ct C £2(u): then

vy = [rdn = [sEan— o
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as consequence of the Riemann-Lebesgue Lemma. For general f (of non-necessarily zero integral),

0=tim(f ~ [ fdw 0~ [ 1 = tm(rU) = (L0 = [T [ fau

Now for f, g € £?(u) we can use the equality

(0,07 1) = 3 (F + 0.0 +9)) — (1.U"1) — {9.U"9))

and conclude that
g, U"f) = [ £ [ g

This condition tells us the the functions U" f and ¢ are “assyntotically uncorrelated” (we remind
the reader that (¢, U"f) = v;,(n)). We also observe that above we only used the property
of T" having absolutely continuous spectrum to compute the previous limit (equivalently, that
(f,U"f) — 0 for &2 functions of zero mean). This property is sufficiently important to deserve
a name.

Definition 5.2.2. T : (M, By, p) © is (strong) mixing if for every f,g € £?,

lim/g-foT"d,u—/fdu/gd,u.

It is immediate that mixing systems are ergodic (if f is an ¥? invariant function of zero mean,
then its £? is zero), but this condition is stronger as systems with discrete spectrum cannot be
mixing. By our previous discussion it also follows that absolutely continuous spectrum implies
mixing, but the converse is not true (eg. Gaussian Shifts).

Remark 5.2.1. To understand the origin of the word mixing, let us take characteristic functions
f=14,9=1p. If T is mixing then

(9, U"f) = w(BOT"A) —— p(A)u(B). (5.1)
Assuming that p(B) > 0, the previous limit can be written as lim,, (T~ "A|B) = u(A); this means
that the proportion that T~" A occupies inside B approaches (for n large) the same proportion that
A occupies inside M.

By approximating £? functions by simple ones, it follows that the convergence of (B N
T"A) —— u(A)u(B) for every pair of measurable subsets of M implies mixing.
n—oo

Let us give some examples of mixing systems. We’ll employ the following lemma.
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Lemma 5.2.1.

1. If there exists a dense subset E C %*(M,R) such that for every f € E, lim,(f,U"f) =
([ fdp)? then T is mixing.

2. If there exists an generating algebra A C 9B\ such that for every A € A, lim,, u(T""AN A) =
w(A)?, then T is mixing.

Proof. Fix g € ¥? and consider the functionals G, G,, : £* — C, G(f) = (g, f), G.(f) = (g, f)-
Note that |G, |l < ||¢g|| and since they converge pointwise to G on the dense set F + i E, they
converge everywhere, and 7' is mixing.

The secont part is direct consequence of the first. [
Examples
1. Bernoulli shifts o : Ber(py, - -+ ,py) O are mixing. Indeed, if A is the algebra of cilinders

and A € A, then there exists ny such that for every n > n,, the sets A and 07" A don’t
have a restriction in any coordinate in common, in particular they are independent. Thus
w(T=ANA) = puT"ApA = pA?, and we can use lemma 5.2.1.

2. Expanding linear maps of the circle are mixing. Consider f : T ©O, f(x) = kz mod 1 for
k > 1 and let u be the Lebesgue measure. If A is an interval, f"A = UY ' A4; where
A€ [ 55) and pu(A) = 42
As the k-adic numbers are uniformly distributed in [0, 1), for large n set interval A is going
to contain ~ k" u(A) intervals A;. It follows that for n large,

A
HFTTANA) & A C A X p(A) = K (A = p(AY?

and arguing as before we deduce that (f, 1) is mixing.

3. Let A € SLy(Z) be an hyperbolic matrix, and we consider its induced automorphism
A : T? ©. We claim that with ; the Haar measure, the system (A, p) is mixing.

Let us denote by ¢, the flow in the unstable direction of A (horocylce flow), ¢;(z) = = + te*
where ¢“ is a unit vector in the direction of EY%; : ¢, is an irrational flow on T?, and in
particuar ergodic for ;. We compute for every n,

A () = A"(x + te") = A"z + N'te" = pni(A"z) A > 1
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Now take f € C,(T?) and T << 1,
[ e sy = 7 [ Car [ ) e duta)
=1 [ at [ oo an) since s =
=1 [ at [ oo ante)
-1 / du /O " F(éxeA"s) f(én(x)) dt by Fubin's theorem
~ / f(@(% /O ! FloamA™) dt)d,u(x) since f is unif. continuous and T' = 0
=[5 [ Sovrat)anta
= [ran (g [ fomatan

For n large the term <ﬁ OMT f(dz) dt) converges to [ f(x)du(x), by Birkoff’s theorem
2
and thus the integral converges ( [r du) , as we wanted to show.

Now we consider the following problem: how do we establish that a given dynamical system
has absolutely continuous spectrum? This property is much more delicate than mixing, in
particular because we have to check that for every f € £* & C its spectral measure v; is
absolutely continuous. There are not so many general methods to do is (that I'm aware of, but
I'm not an analyst), but at least we have the following.

Theorem 5.2.2. Let v € JL(S).
1. Wiener: If imy o0 g3 Sone_n 12(n)|? = 0 then v is continuous.
2. F. and M. Riesz: If v(—n) = [ 2"dv = 0V¥n > 0 then v << X and furthermore either v is
equivalent to Lebesgue or is the zero measure.

The proof of both Theorems can be found in Katnelson’s book [14].

Suppose then that T is ergodic: to check that 7" has absolutely continuous using Riesz’s
brothers theorem we’ll have to show that for every f € C+ € £2,n > 0, it holds
(U Y =0~U"f LU™fVn,m € N,n #m.
Observe that in the absolutely continuous spectrum case £7_ , is cyclic, and assuming the
condition above we can find {f;},c; with J either finite or countable such that

2

T,cont

{U"f; :n €Z,j e J}is an orthonormal basis of &£

The condition above also deserves a name.

Definition 5.2.3. We say that T : (M, %\, p) O has Lebesgue spectrum if there exists () #
{fi}jcs C £%such that

{1} u{U"f; :n € Z,j € J} is an orthonormal basis of £*

In this case the cardinal of J (either finite or infinite) is called the multiplicity of the spectrum.
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As a consequence of our discussion above we have

finite/infinite Lebesgue spectrum = absolutely continuous spectrum.
Question. Does absolutely continuous spectrum imply finite/infinite Lebesgue spectrum?

Example 5.2.1. Let us consider A : T? — T ergodic linear automorphism, and recall (proposi-
tion 4.1.8) that for every k # 0 the orbit {(A*)"k},ez is unbounded. Choose a set of representatives
A C Z¢ for the orbits of A*. If e;(x) = e(2n(k, x)) is the character corresponding to k, then

Uaer(x) = egnp(2)

and since the characters are an orthonormal basis of #?*(T?) we conclude that A has Lebesgue
spectrum (in particular this gives an alternative proof of the fact that A is mixing). We also claim the
spectrum is infinite, i.e. #/A = oo. Indeed, by lemma 4.1.10 A (and thus A*) is partially hyperbolic,
and thus for any 0 # k € A, its orbit under 6[A| approaches E%. for the future, and E¥,. for the past.
As these are two proper hyperspaces of R, there are infinitely many integer points outside; by the
same argument the orbit of finitely many k € Z¢ cannot be the whole lattice, and A is infinite.

T : (M By,p ©O,8 : (N, By, 1) © are systems with Lebesgue spectrum of the same
multiplicity then 7', S are spectrally equivalent. Here is another meaningful example.

Example 5.2.2. Bernoulli shifts have infinite Lebesgue spectrum. Consider o : Ber(1/2,1/2) ©O and
denote X, : ¥ — {0, 1} the n-projection, Y,, = (—1)%». Let

B = {H Y,, F finite} = B C £? orthonormal basis.

neF

Also, UT],.cp Yo = [1,e(p11) Ynr thus choosing a (necessarily infinite) representative for the orbits
of U in B we deduce the claim.

We'll prove later that all the same is true for all Bernoulli shifts, thus all Bernoulli shifts are
spectrally equivalent, an in particular have the same spectral type. Additionally, any ergodic linear
automorphism of T¢ is spectrally equivalent to a Bernoulli shift.

So naturally we could ask: are all Bernoulli shifts conjugate? Are the previous examples
conjugate, i.e. given a ergodic automorphism of the torus, is it conjugate to a Bernoulli shift?

The answer of the first one is NO: Kolmogorov introduced the concept of entropy precisely to
show the existence of non-isomorphic Bernoulli shifts. The second turns out to be actually true.
This surprinsing fact is the culmination of several major achievements in Ergodic Theory in the
XX century. We’ll say more in later chapters.

5.3 Weak Mixing

What about continuous spectrum?
Definition 5.3.1. T : (M, By, 1) O is weak-mixing if it has continuous spectrum.

At this point we could use Wiener theorem to obtain a equivalent characterizations to weak-
mixing, but it is useful to fist introduce a concept to study Césaro convergence.
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Definition 5.3.2. We say that a (bounded) sequence (a,),, of non-negative numbers converges to 0
in density (D -lim,, a,, = 0) if there exists S C N of full density such that lim,cs a,, = 0.

Remark 5.3.1. Supppose that for every ¢ > 0 the set F, = {n : a,, > €} has zero density; then for
every m € Ny one can find n,, such that for every n > n,,,

:#Fl/m+1m{07"'7n_1}< L
n m+1’

d(n,m+1)

since F; D Fy D -+, it is no loss of generality to assume also that (n,,) is increasing. Define

F= U Fy s 0 {0y - Mg — 13

m=0
then for n given choose m such that n,, < n < n,,,; and compute
Fn{0,--- ,n—1}=FnN{0,--- ;nyp —1}UFNO{nm,  Npy1}
- Fl/mﬂ{O, s Ny, — 1}UF1/m+1m{TL, ,nm+1}
which implies

Fn{0---n—-1} _ 1 1

n m m+1

This implies that F is of zero density, and moreover lim, g a,, = 0, i.e. D -lim,, a,, = 0. Conversely,
if D-lim,, a,, = 0 then it is direct to check that for every ¢ > 0, F, has zero density.

Using the remark above one establishes the following without too much trouble (cf. Walters).

Lemma 5.3.1. Let (a,), be a bounded sequence of non-negative numbers. The following are
equivalent.

1. D-lim,a, = 0.
2. lim, ZZ;& a, = 0.
3. lim, 37" a2 = 0.
We can now prove:
Proposition 5.3.2. Let T : (M, B, i) O be an automorphism. The following are equivalent

1. T is weak-mixing, meaning that for every f € C* C 22 v; is continuous.

2. For every f,CH,

N
1
lim

, 2N+1kZN‘<va"f>’=0-

3. Forevery f,qg € ¥2,

I 1
im
n 2N+1k

> g, U f) = (g, 1)(1, ) =0
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4. For every A, B € By,

N
lim 5 k:ZNIM(BﬂT A) = u(A) - pu(B)] =0

5. T x T is ergodic.

Proof. 1 < 2 By Wiener’s theorem and the above Lemma,

N N

1 n 2 : 1 n .
w1 2 WAUTHP =0e im0 B [(f,Uf)]=0.

k=—N k=—N

vy is continuous < lim
n

2 & 3 Proceed as for the mixing case.

3 < 4 Approximation.

4 = 5 By basic measure theory, £?(u®p) = L*(u)@%?*(1). Consier F(z,y) = fi(z) f2(y), G(z,y) =
g1()go(y) with f;, g; € £2(X) and note that

D—llrIL11<G, UIT“LXTF> = D_li£n<glvU7@f1><g27 U%f2> = <gl7f1><927f2> = <G7 F>

Since the set of product functions as before is dense in £?(u @ u), it follows that the same is true
for every F,G € £2(u @ p), and T' x T is weak-mixing (thus ergdic.)

5 = 2 Note the D-lim, a? = 0 < D — lim, |a,| = 0. Consider f € C* C %¥?(u) (real valued);
ergodicity of 7' x T implies, by exercise 5, that for a,, = (f,U"f) it holds

D-lima? = 0= D-lim|a,| =0

and 7T is weak-mixing. [

The concept of weak-mixing is somewhat akward to work with; after all it is not completely
obvious how to construct continuous singular measures (see section 3.5). To complicate things
further, there exist singular measures on S! such that their Fourier coefficients go to zero® as
n — 4oo. Nonetheless, weak-mixing is much more abundant than mixing: let us give some
illustrative examples of these fact.

1. Interval exchange transformations are never mixing for the Lebesgue measure (Katok).
Nevertheless, there exists a generic set in the space of parameters (in the complement of
rotations) such that every IET on this set is weak-mixing (Katok-Stepin; Avila-Forni).

2. Let € (0, 1) be a Liouville number, and define
F=cl(hor,oh:he Diff>(T)) clousurein the C* topology.

It is a result of Herman-Fathi (based on the Anosov-Katok method) that there exists a
generic set G C F such that if f € F then

* f is weak-mixing but not mixing.

* f is minimal.

IThe first examples are due to Mensov
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* There aren’t too many invariant geometrical structures: in particular there there is no
f -inariant C° foliation for f (Kocksard-Koropecki).

One can make analogous definitions for flows (¢);. A famous question asked by Poincaré is
the following.

Question. Suppose that (¢;); : T? ©O is an irrational flow corresponding to angle o (which is ergodic
for the Lebesgue measure, but not weak-mixing). Does there exist a reparametrization ¢; of ¢; such
that ¢, is weak-mixing?

By a reparametrization of (¢;); we mean that QNSt(x) = ¢st,0)(x) for some s : R x M — Ry;
regularity of s plays an important role in the discussion. It turns out ¢, preserves a measure y
equivalent to Lebesgue, and thus is conservative; if s is smooth, then p is an smooth volume.
Observe that (¢, 1) is clearly ergodic.

Theorem 5.3.3 (Kolmogorov). If ais Diophantipe and the reparametrization is smooth, then there
exists a differentiable conjugacy between ¢; and ¢,. In particular, no reparametrization of ¢, can be
weak-mixing (with respect the associated measure ).

What about other irrational numbers? It is known that minimal smooth flows cannot be
mixing (but C° flows can). Then we have the following.

Theorem 5.3.4 (B. Fayad). For a generic of smooth reparametrizations ¢, it holds that
o & is weak-mixing, and

e minimal.

Question. Does there exist (conservative) mixing minimal flows on surfaces?

5.4 Mixing for the geodesic and horocyclic flows
We go back to the flows g;, u;, v; studied in section 4.3; we fix a lattice I' < PS1,(R)(or S15(R)) and
consider the corresponding homogeneous space X = I'/G equipped with its Liouville measure

1y . We have already shown that all these flows are ergodic corollary 4.3.24.

Proposition 5.4.1. g, is mixing.

Proof. Let a,b € C.(X) and compute their correlation coefficient ¢(t) = (b, g;a); due to uniform
continuity of g;a we have that if r ~ 0, ¢(t) ~ (a,u,g:a) = {(a, g;u,cra), where in the last part
equality we have used lemma 4.3.11. Then ¢(t) ~ (g_;a,u,cta) for r ~ 1. Take average in
r € [0, R] to get

1 R
(a, gra) =~ (g_.a, —/ Upeta dr) — (a,/bd,u) = (a, 1)(1,b)
R 0 t—o0

where we have used ergodicity of both g;, u; [
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Corollary 5.4.2. f =g, : X © is ergodic.

The proof above and what follows appear in McMullen’s notes [16], that are highly recom-
mended. Next we establish that u, and v; are mixing.

Elliptic flow in X There is a natural flow in 77H that consists of rotating vectors: o,(z,v) =
—2mit
(z,e ™).

Lemma 5.4.3. Under the identification T\H ~ PS15(R) o, is given by

cos(t/2) sin(t/2)

o(A) = A —sin(t/2) cos(t/2)

In particular o, is conservative.
Proof. Exercise. [

By looking at fig. 4.6 we see that we can write

Us = Or+r(s)Gt(s)Or(s) (5.2)

where r(s) —— 0,t(s) —— 0

5§—00 §—00

Proposition 5.4.4. u,; (and v;) is mixing.

Proof. Again consider a,b € C.(X) and write for s large

(a,ush) = (a, Onyr(s)91(s)Or(s)D) = (07, Gi(s)b) = (0—ra, 1)(1,b)

since g; is mixing. Finally, observe that [ a(o_z)dux = [ a(z) dpx. ]

5.4.1 Equidistribution of the orbits of u,, v;

For this part we assume that X is compact. By a dynamical box we mean a set of the form

B(z,a,b,c) = U gt U W*(y,b)

0<t<T yeW(z,a)

If a,b,c are sufficinetly small then B(z,a,b,c) is embedded in X, for every x € X. We fix
B = B(zy,a, b, c), and note that by ergodicity we have ux -a.e.,

lim {t : upq(x) N B # 0} _

t—o00 t

1x(B). (5.3)
To simplify the notation denote U(x,t) = up4(x). Now we use Egoroff’s theorem: given ¢ > 0
we can find T > 0, X. € X such that

e ux(Xe)>1—¢

e for all z € X, it holds

||U(fv,T)ﬂB|_

- ux(B)| < e
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The next idea is to apply the geodesic flow to the whole picture and use its renormalization
property. Observe that g,U(x,T) = U(g,x,e T, so its natural to use ¢ = log T to get a set of size
1. Note that

b
glogTB = B(Qlong> CLT, f, C) = B/

and X! = gjos 7X. has volume > 1 — e. The key point is that if z € X/, then
1U(2,1) N B'| — ux(B)| <.

To finish the argument, consider any y € X, and let ¥ = gio,7(y). Take z € X approximating
y" (which is possible since ux(X.) > 1 — €) and note that U(y/,1) = U(z, 1) intersects B’ in
segments of total length ~ ux(B). There is a small subtlety here, as moving + — y could (in
principle) move a significatively amount of the segments in U(z, 1) N B’. But that’s precisely
why we are renormalizing to size 1, and we can adjust using the following argument: we have
px(0B) = 0, therefore, for our initial ¢ we can find p > 0 so that the measure of 9,5, the
p-neighborhood of 0B, is much smaller than xx(B). Then we adjuts X, T so that it also works
for boxes B; C B C B, with

By CBcapBl C By CapB.

Moving ' — x inserts a small error (depending of p only), and thus it doesn’t alter much the
reasoning. We thus conclude the limit in eq. (5.3) holds for y, i.e., for every point in X. Using
regularity of the measure one gets the following.

Theorem 5.4.5 (Furstenberg). The horocyclic flow corresponding to compact hyperbolic surface is
equi-distributed: for every f € C(X), for every x € X it holds

t—T

lim/OTf(ut(x)) ds:/fdp.

This is very important theorem in Ergodic Theory, originating many reaserch lines. See
[51,[23] and the recent contribution of mine with Federico Rodriguez-Hertz [6], to name a few.

Furstenberg’s theorem above implies the following consequence, which was established before
by other methods.

Corollary 5.4.6 (Hedlund). The horocyclic flows are minimal.

Remark 5.4.1. One can wonder if equi-distribution/minimality still holds in finite area. This is
not the case: you can take an hyperbolic surface, make a puncture and push to oo, obtaining finite
area (like the modular surface). However, horocylces in this puncture get trapped, and the only
possibilities for them is to be circles. This a general result due to Dani.

Theorem 5.4.7 (Dani). If X is an hyperbolic surface of finite area, and p is an invariant measure
for the horocyclic flow, then either

1. p=px,or

2. p is supported on a closed horocycle.
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Exercises
1. Find an example of an system with discrete spectrum that has finitely many eigenvalues.
2. Let o = (v, -+, aq) such that ay, - - - , g, 1 are independent over Z. Show that R, : T? ©
is (measure theoretically) conjugate to R_,, : T ©.
3. Show directly (without F. and M. Riesz’ theorem) that Lebesgue Spectrum implies mixing.
4. Prove lemma 5.3.1.
5. Show that the following are equivalent.
(a) T is ergodic.
(b) Forevery f € %2, lim, 2 S0 (£, U f) =0
(c) Forevery f,g € %2, lim, 2 3°370(g, U* f) = (9, 1)(L, f).
6. Consider T': T ©O,T(x) = 2z with the Lebesgue measure p. Show that given (a,), € (?

there exists f, g € £? so that (f,U"g) = a,,Vn.
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CHAPTER 6

Ergodic Theorems

In this chapter we will establish several ergodic theorems, i.e. theorems that establish the
convergence of the ergodic averages, in some appropriate sense.

6.1 Von Neumann’s theorem

Here is (argueably, compare with Weyl’s 1.3.1) the first ergodic theorem.

Theorem 6.1.1 (Von Neumann’s 1929). Consider T': (M, By, 1) O an endomorphism. Then for
every [ € £? it holds

Anf S B (f1T)

It turns out that at that time Von Neumann was interested in quantum mechanics, so he gave
a more general version adated to this theory. Although his theorem is consequence of the ET,
it is not clear if Von Neumann didn’t prove the more general result because he simply wasn’t
interested in convergence almost everywhere. In any case, let us spell the proof.

As we saw in section 5.1, the Koopman operator U = Uy : $? © is an isometry/unitary
operator, and we can write the ergodic averages for f € &2 as

n—1
Anf = (0N

on the otherhand £ = E,,(|7) : £*(Bn) — £*(J) is simply the orthogonal projection. Therefore,
what we want to show is that

lnz_lUk 50T, 1
n n—oo ’
k=0
Note also that £*(J) = {f € £*: Uf = f} = ker(U — I).

Theorem 6.1.2 (Von Neumann). Let U : H O be a contraction (||U||e < 1), and consider
Hiny = ker(U — I), E : H — Hiyy the orthogonal projection. Then

n—1
1 i SOT
Vi = ‘ZHU v

n

91



92 Ergodic Theorems 6.1

The proof uses the following useful lemma.

Lemma 6.1.3. Suppose that U : ‘H O is a contraction.
cUf=f=Uf="F
o U(f)=Affor A€ S' < U*f = \f.

Proof. We have [(Uf, /)] < [JUfIIIf]Il < ||f]|?, with equality if and only if Uf = \f, for some
A € S1; from this we deduce that Uf = f < || f||?> = (Uf, f), which implies the first part. The
second part follows by noting that the contraction U’ = AU has f as an eigenvector if and only if
f is an eigevenvector of \U*. |

Proof of theorem 6.1.2. Write H = H;,, ® Hi:, and observe that if f € H;,, then V, f = f = Ef,
so it suffices to show that for any f € Hi , V,,f —— 0. It is (well known and) simple to check

nv?

that if for a bounded operator we have ker V+ = c1(Im(V*)). Then we have, by the previous
lemma

Hi:, = ker(U — I) = ker(U* — I) = c1(Im(U — 1))

mv

where o6 =Im(U —I) ={g=Uf — f: f € H} are the coboundaries; clearly for g € €06
we have lim,, V,,g = 0, and since the family of operators V,, is equicontinuous (||V, || < 1,Vn),

we get that pointwise convergence in 606 to the zero operator, extends to the clousure. This
finishes the proof u

Corollary 6.1.4. Consider T : (M, By, p) O an automorphism. Then for every p > 1, f € &P it
holds

Auf TS E(11T)

Proof. The proof given above works exactly in the same way for invertible contractions in

reflexive Banach spaces, therefore if 7" is an automorphism we have convergence in &? for p > 1.
For p = 1 a separate argument is required: £?(M) C £1(M) is dense and if f € £?(M) then

| flle: < || f|ls>- This implies that A, f SN Ef for every f € £?. Since (A,), is a family of

n—oo

equicontinuous functions in £*, the result follows. [ |
It is instructive to give a different proof of theorem 6.1.1 using the spectral theorem.

Proof. Fix f € H and let H; = c1(span{U"f : n € Z}). Using theorem B.3.1 we can identify

Hy <> L*(T,uf) py = spectral measure of Uassociated to f

fel
U<+ M,
therefore V,, is identified with the multiplication operator M,, where
(Z)ln_lzk_ 111 ) z=1
TR nTos A7

Note that the A, invariant vectors are of the form 1,¢9,9 € £*(T, us) and Eg = 1,9. Now
|lgnllg= = 1Vn, and (g,), converges pointwise to 1,. Using the TDC we finally get V,h =

g~ 1h = Eh. m

n—o0
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6.2 Birkhof’s ergodic theorem. 93

6.2 Birkhof’s ergodic theorem.

In this part we fix T : (M, %, 1) © an endomorphism, and for its invariant o -algebra J =
{A € By : A= T71A}, denote Er(-) = E,(-|J) the conditioal expectation. Recall the ET
theorem 3.4.1.

Theorem. If f € L' then A, (f) — Er(f) both j-a.e. and in £*.

n—0o0

Let us make some remarks.

1. It suffices to show convergence - a.c..

Note that (A4, : ! ©), is an equicontinuous family of operators (since ||A,||» = 1Vn),
therefore to establish convergence it suffices to show convergence on a dense set. But this is
simple: if £ then ||Ex(f)||g~ < ||f]||¢~, therefore

[Anf =Bz (f)llz= < 2/[fllz~
and the convergence in &' holds due to convergence - a.e. plus the DCT.

2. Likewise, if f € <P then ||A.f||s#, |Er(f)|l«» < ||f]l«»,» and by the same reasoning we get
(after showing convergene almost everywhere) that A,, f BAEN Er(f).
n—oo

3. If T'is an automorphism, then using that 7 = J,-1 we get

n—1

1ZT*if—>IET(f)

n n—oo
k=0

1 L
T E
1 2 T o Ealf)

Observe that if 1 € €»g (M) then for every f € £! we get convergence

Af — Er(f) = /fdu p-a.e. and in L',
n—oo
The property above in fact characterizes ergodicity.

Proposition 6.2.1. Suppose that D C Z! is dense, and for each f € D we have lim,||A,f —
E.(f)|ls» = 0. Then p € €rg,(M).

Proof. By equicontinuity of (A, : £ ©),, we get that for every f € £', A, f —— [ f du. Now
if f is T invariant,
Mf =12 [gau= g [ ap
|

The following simple remark is the basis of the powerful Hopf’s method for establishing
ergodicity.

We point out that even though the set M, (f) where we have convergence of the averages has
full measure, it could be topologically very small, even for regular functions.

pdcarrasco@mat.ufmg.br



94 Ergodic Theorems 6.2

Example 6.2.1. Consider T : T? © the linear automorphism induced by a hyperbolic matrix A;
then Leb € €»q,(T?). Consider the character ¢(z,y) = exp(2wiz): this is an analytic function
with zero integral.

Now take any v € W*(0) = {w : A"w —— 0}: then

n—oo

P(A") —— 1= Ao(v) — 1 #0 = /ngdLeb.

n—oo n—oo

Observe however that W*(0) is dense in T>.

6.2.1 1st proof: The Maximal Ergodic Theorem
The first proof that we’ll give is very similar to the one of Von Neumann’s theorem. It is based in
the following two ingredients.
1) Decomposition Lemma. It holds
' M)=2"T)eC

where 6ot = {f —Tf : f € £'} are the £! - coboundaries; note also that since £~ C %! is
dense, 6ot = Gob NL>.

2) Maximal Ergodic Theorem. If A >0, f € &¥! it holds
1
p(sup A, f > A) =< XHijl

This is a weak inequality of type (1, 1) for sup,, A,,. See below.

Having established 1), 2) we can argue as in Von-Neumann’s theorem: take f € £!, and
write f = g + h where g = Er(f) € £'(J) and h € C' N £>~. Then

Anf =Er(f) + Anh,

therefore we want to prove that A,h —— 0, u-a.e.. If h € C N %>, then h = h — Th and
n—oo

P i
Anh:h h > 0

n n—oo

since || A, h||g~ < % For a general h € C' N>, write h = limy, by, (in £1), where (h), C
C'NZ>. Then

limsup |A,h| < limsup|A,(h — hg)| = limsup By Vk,

where By, # 0 by the Maximal Ergodic Theorem. We deduce y(limsup,, |A,h| > 0) = 0, and
—00
this finishes the proof. It remains to show 1) and 2). The decomposition part is the simpler one.

Proof of the decomposition Lemma. The linear operator Er(-) : £'(%By) © is a projection with
image £'(7), therefore we can write

2" = Im(Er(f)) @ ker(Ez(f)) = £'(J) @ ker(Ez(f)).

As C C ker(Ez(f)), and E(+) is continuous, it remains to show that C' = ker(Er(f)). This will
be achieved by a typical application of the Hahn-Banach theorem.

pdcarrasco@mat.ufmg.br



6.2 Birkhof’s ergodic theorem. 95

Claim. C = ker(Ep(f))

Otherwise by H-B there exists a function ¢ € £1* such that ¢|C = 0, ¢| ker(Er(f)) # 0. Any
linear functional in &' is given by integration with respect to a £, i.e. there exists g € £>
such that for every f € £', ¢(f) = [ fgdu. Obsserve that since ¢|C = 0, for every f € £!

/fng:/ngdu/(f—Tf)gd,u:O.

On the other hand, by invariance of p1, [ T f(g — Tg) = 0. Taking f = g we get

/Tg(g_Tg)d”:Ov/g(g—Tg)du=0:>/(Tg—g)Qdu=0:>g“‘=€'Tg.

We’ve shown that g is invariant: but then if f € ker(Er()),

o= [ sadn= [Exlto)du= [ gEx()an=o

contradicting the fact that ¢| ker(Er(f)) # 0
|

At this point I could just give the proof of the Maximal Ergodic Theorem: it’s a (slick) trick.
However, I think that it is more interesting if we can contextualize this type of argument.

6.2.2 Weak inequalities for sub-linear operators

For a function f € Fun (M), its tail distribution function is ﬁf(t) = u(f > t). As a consequence
of Markov’s inequality lemma A.2.2, we get that if f € &', then for all ¢ > 0

= [/l

Fip(t) < ==

These type of inequalities have a name.

Definition 6.2.1. A measurable function f : M — R is of weak type p (where 1 < p < oo) if there
exists C' > 0 such that for every t > 0 it holds

C
Fip(t) < e
Markov’s inequality tells us that f € £? then f is of weak type p.

Example 6.2.2. Consider the real function f(z) = ﬁ Then f & £*%: however,

Leb({t : —— > 1}) = Leb({ls] < 3}) =

Vel

and f is of weak type 2.

We denote £7" (M) the set of measurable functions of weak type p. This is a vector space,
and we equip it with the (natural) weak norm

: ~ C
| fllgrpe = inf{C > 0: F(t) < ?,Vt > 0}.

Consider two measure spaces (M, By, i), (N, By, v) and let T : LP(u) — L2%(v) be sub-
linear, that is,
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* |TAHI=NT(f)]if A > 0.
* [T(f+9)| <IT(f)|+|T(g)l-

Definition 6.2.2. T is said to be of weak-type (p, q) if it is bounded, that is, there exists C' > 0 such
that Vf € LP(p), | T fllzow < [[f -

Let T : (M, By, i) ©© be an endomorphism. For f € £! define
Mf :=supA,f.
Then M is sublinear.

Theorem 6.2.2 (Maximal Ergodic Theorem). If f € £! then |sup,, Apnf|lse < |||« Equivalently,

[/l
o

Vit >0, pu(sup A, f > 1) <

The proof will follow from the next lemma.

Lemma 6.2.3 (Garsia’s lemma). Let U : £1(M) © be a positive contraction (||U]||, < 1). For
f € &' define the averages

Sof =0
Sif=17f
n—1
Suf = U*f.
k=0

and let My f := supg<,<ny Snf, Exn = {Mnf >0} ={z:31 <n < Ns.t. S,f(z) > 0}. Then

fdp > 0.

En

Proof. Note that My f > 0 by definition, and S,,f < My f for all 0 < n < N. Since U is positve,
we get

USnf < USnf:> sup USnf < USNf

0<n<N
[+ sup US,f= sup S,f <USnf+ [
0<n<N 1<n<N+1
= sup S,f —UMnf < f

1<n<N

On Ey we have My f = sup,.,<y Snf, therefore
rapz [ Myrap- [

En EN En

since My f > 0, and

/MNf UMy fdu =0

UMNfdMZ/MNf—UMNfdM
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6.2 Birkhof’s ergodic theorem. 97

since ||Ul|p < 1.

|
Proof of the Maximal Ergodic Theorem. We have u(sup,, A,f > t) = u(sup,, A.(f —t) > 0) =
limy p(Myh > 0) where h = f —t. By the lemma [, , . (f —1) >0, hence
Il = [ 17100 > a(hiwh = 0) = utsup Auf > 1) < L1,
[ |

Exercises

1. Prove Wiener’s local ergodic theorem : if (¢;); : (M, u) O is a flow, then for every f € L(M)
it hols

€

lim 1 ¢sf(x)ds = f(x) p-ae(x)

e—0+ 2¢ e

Suggestion: proceed as follows.

(a) Show that for yi- a.e.(x) there exists I, C R of full Lebesgue measure, so that for ¢ € I,
it holds

lim - / buf () ds = f(dn).

e—0+ 2¢

(b) Let B = {z : limeo1 5- [ ¢sf(x)ds # f(z)} and use the previous part to deduce that
there exists ¢, so that u({z : ¢, (z) € B}) = 0, thus implying that x(B) = 0.

2. Let H be a Hilbert space and U € U(H) = {U € B(H) : U is unitary}. The set of U-
coboundaries is Im(U — I), and we say that z,y € H are U-cohomologous if x — y is a
U-coboundary.

(a) Assume that z,y are U-cohomologous. Show that the limit o*(z) = lim,, ||S,(z)|?
exists, if and only if 02 (y) exists. In that case, show that these quantities coincide.

(b) (x) Show that x is a U-coboundary if and only if sup,,||S,(x)|| < occ.
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CHAPTER 7

Stationary Stochastic Processes

Probability and Ergodic Theory are (of course) very related. In this chapter we’ll introduce the
probabilistic point of view and study some important examples coming from this area.

7.1 Stochastic Processes

Fix (M, %\, 1) a probability space.

Definition 7.1.1. A (discrete time) stochastic process is family of rv. (X,), (indexed by N or
Z) on M. More generally, if (S,%s) is a measure space, we can consider measurable functions
X,: M —S.

For a stochastic process X = (X,), we consider Q = SY (or S%) and let %, its product
o -algebra; we remind the reader that %, is generated by cylinders

C=Ayx A x---A, xSxSx--; A €RBg
Define ®X : M — Q, &% (z) = (Xo(x), Xi(z), - - ) and observe that for a cylinder C as before,
<®X>71<C> = {XO € A07 e 7Xn € An} € %My

and thus it is measurable as a map from (M, By) to (Q, By); let P = &% .
Definition 7.1.2. P is the distribution of the process.

From the measure theory point of view, P completely determines the process (X,); for
example, it is not difficult to show (see exercise 1) that given any measure on (2, it is the
distribution of some process in 2.

Convention. From now on we’ll use “process” to refer either to the sequence of measurable
functions, or to the probability P. We denote X,, : @ — S the n-th projection. The space
(2, Bq, P) is the natural representation of the process.

Let o : 2 — Q) be the shift map.
Definition 7.1.3. The process (X,,), is stationary if P € P+,(Q).
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One checks without any difficulty that (X,,), is stationary if and only if Vn € N, Ay, --- A, €
Bs, k € N(resp. Z) it holds

P(Xo € Ag, - Xp € Ap) =P(Xy € Ao, -+, Xk € Ap).

Let us now investigate measures on the product space ). In basic courses in measure theory
one usually considers measures in finite products, but here we have infinitely many factors. We’ll
try first to understand the product measure. Suppose that v € P#(S):

Question. What’s the product measure v*?

Answer. It is the (unique) probability measure P € P+ ({2) such that for every n > 0, for every
f DSl RZOJ it holds

/f(wo,wl,-- w,) dP(w / /fuo, ) di(uy)) - ()

Alternatively, letting v, = v x --- x v and X' = (X, -+, X,,) : Q = Q, := 5", 1% is the
| — |
n+1 times
unique measure on ) such that for every n,
(X3P =,

The measures (X[).P are the finite dimensional distributions of P. From this point of view, the
fact that the v, are product measures doesn’t seem to be that important and we could ask if given
a family {v, € P+ (,)}., there exists P € P+ (2) such that its finite dimensional distributions
coincide with the v,,. Observe however that some compatibility among the v,, is necessary: if
Tn s Qo1 = Qo

Trn(wOv"' 7wn+1) = (Woa"' ,Wn)

then X7 = m, o X;™'. Therefore, if {v,, € P+(2,)}, are the finite dimensional distributions of
some measure, then m,v, 1 = v, Vn.

Question. Given {v, € P+({2,)}, with the compatibility condition, does there exist P € P+(f2)
such that X,,P = v,, Vn?

The answer is affirmative under mild assumptions on S; [4]. In any case, let us try to
understand how we would proceed. The key point is to realize that for every n > 0, we have an
isomorphism

X(T)L : (Qv %S(ln)) — (Qm %Qn) %81) = O-alg»gen(XOv e 7Xn>‘

Thus, we can use X to lift v, to a measure on 9381) and by the compatibility condition, we can

define an additive measure IP on the algebra of := |, %g‘) C Bq. Since o generates Ay, it would
suffice to show that PP is o -additive on ¢, and then invoke Caratheodory’s extension theorem to
conclude the existence and uniqueness of the desired measure on %g,. To check o - additivity, we
can use the following simple Lemma.

Lemma 7.1.1. Let v : ol — [0, 1] be an additive measure defined on the algebra di. Then v is
o -additive if and only if for every sequence (C,,),, C 9, C,, \, 0 it holds

limv(A4,) =0.
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We consider then a decreasing sequence (C,,),, C A with " C, = 0.

Remark 7.1.1. It is no loss of generality to assume that C,, € %g‘) Vn. Indeed, let n, be the first
index such that C; € B4, and define

(2

{M 0<i<n

01 i:nl

Likewise, let ny, with Cy € 935(2"2). If ng < ny define C} ,, = Cy: otherwise we proceed as before
and copy C until reaching the index n,. Repeating this procedure we arrive to a sequence (C/);>o
which is decreasing and consists of the same elements as (C.,),, (plus M), hence (-, C! = . As
C, C ClN¥n, if v(CY) — 0, then the same is true for the original sequence (C,,),.

As C), € ngL),Cn = A, xS x8x---with A, € Bg_,and A,.; C A, x S for every n > 0.
Suppose by means of contradiction that

liyrbnp(cn-ﬁ-l) = hran/]lAnH (Uo, e 7un+1) dV?"H-l(an te aun—i-l) > 0.

What we would like is to write [ 14
expression of the form

i1 AUnyq in terms of A,,, v, then by induction we’ll have an

/]lAnH(Uo,"' s Unt1) AVpga (o, -+ 5 Upg1) = /93+1(U0)d’/0(u0)

where g; ! is computed with vy, -+ | vy, 1.

Example 7.1.1. In the product case,

G (ug) = / / Ly (st -+ s timss) (s - ).

Note that since A, C A, x S, gi™' < g& for every n and since

lim/gg(uo) dvo(uo) > 0

there should be some x so that inf,>1{gj(z0)} > 0 (otherwise by the TMC the above limit is zero).
But now

gg(mo) ://"'/]lAn<-T0au17"' ,Un)an(Ul,"' ’un)
:/(/-../mn(xo,ul,.-- ) vy, ) ) i () :/g’f(azo,ul)dyl(ul),

and as before, there exists =, such that inf,>2{g}(x¢, 1)} > 0. Proceeding this way we construct a
sequence (xy)g>o such that inf, >, 1{g}(zo,- - ,xx)} > 0, and in particular

inf gy (zo, -+ ,xn) > 0= (20, -+ ,2,) € A, V.

This would give a contradiction, as (x,), € (), Cn = 0. The reader should compare with the proof of
proposition 3.3.2.
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The argument used in the previous example to show o -additivity seems to be flexible enough:
it depends on being able to write v, in terms of v, provided that 7,v, .1 = v,.

Problem. Given (M, %, 1), (N, %) and P probability on the product M x N with myP = p,
write P in terms of u.

In the case where N comes equippped with a measure v and P = 1 x v we can use Fubini’s
theorem, but of course this a very strong restriction. One way to proceed is to use disintegrations
(see section 9.2); below we present another (essentially equivalent) approach that is sufficient for
our purposes. But before that let us spell a consequence of the existence of the product measure.

Consider an stochastic process (in its natural presentation) (X, : 2 — R),>o such that its rv’s
are

* identically distributed, X,P = p Vn;
* inependent (see Appendix A).

It’'s a matter of unraveling the defintions to see that this is equivalnt to say PP is the product
measure /%,
One sees easily that (o, P) is mixing, and therefore ergodic.

Theorem 7.1.2 (Strong law of large numbers. Khinchin-Kolmogorov ~ 1928).
If a= [|t|du(t) < oo then

Xo+ -+ Xy

n n—oo

ya P-a.e. and in 2'(P)

Proof. Since X,, = Xy o0 0", % = Y771 0" X,y and Ep(|X,|) = a, and the result follows
from the ET. |

Corollary 7.1.3 (Weak law of large numbers).
In the same hypotheses as the theorem above,

Xo+--X,_
M—a|>e)—>0

n n—oo

Ve >0, P(]

7.2 Transition probabilities

Instead of assuming that N comes with the a single measure v, we’ll assume the existence of
family of measures {v, },cn with v, € P+(N), and depending measurably on the base point.
Then, we would obtain a probability on M x N by considering

C € Brixn = /Vz(Cﬂ N,)du(x) (N, ={z} x N).
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(

Ux(CNN,)

The details are as follows.
Definition 7.2.1. A function K : M x By — [0, 1] is a probability kernel (from M to N) if
* K, = K(x,-) is a probability on N for every = € M.

* The function + — P+ (N) given by x — K, is weakly measurable, in the sense that for every
B € By, x — K, (B) is measurable.

If N = M then a probability kernel is usually called a transition probability (kernel).
Probability kernels are commonly denoted as K (z,dy) (= the measure K).

Lemma 7.2.1. Given K probability kernel and f € Fun(M x N)s, the function gy : M — R
given by

o5(e) = [ o 9) Ko,y
is measurable.

Proof. By definition of K this is true if f = 14,5 where A € By, B € By. The family
M = {C € By« : g1, is measurable}

is non-empty and contains the algebra of = {A x B : A € By, B € %Bn}, which generates Byi«x.-
Claim: ./ is a monotone class, meaning that it is closed by (countable) increasing unions and
decreasing intersections.

Indeed, let (Cy,), *,Cy € Jl Vn,C :=J, Cy,. By the TMC, g1, — g1... As the g1, are By
measurable, so is g1, and C € Jl. Similarly for decreasing intersections.

If follows by the Monotone Class Theorem that Byjyn = 0uyygen. () C AL. For general f, we
approximate by simple functions. [

Given p € P+ (M) and a probability kernel K from M to N we can use the previous Lemma
and define P € 9+ (M x N) by:

f € Fun(M x N)so = / F(z,y) dP(z, y) = / ( / f(x,y)K(x,dy)) dp(z). (7.1)

Given a non-necessarily positive f € Fun (M x N) one can proceed by writing f = f* — f~ with
fH [~ € Fun(M x N),> and check that f € £*(P) if and only if [ [ |f(z,y)|K(z,dy) du(z):
in this case again we can compute the integral of f with respect to P by the eq. (7.1).

We've proved the following.
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Theorem 7.2.2. Given 1 € P+ (M) and a probability kernel K from M to N there exists a unique
P € @»(M x N) such that for every A € By, B € By, P(A x B) = [ K(z, B) du(x). Furthermore,
for f € Fun(M x N), it holds f € 21 (P) ifand only if [ [ |f(x,y)|K(x,dy) dP(z). In this case,

[ rama= [ [ oK) ).

Definition 7.2.2. The probability P constrructed above is the skew-product of 1 and K it is denoted
P=uxK.

Example 7.2.1. If K, = v,Vax, for some probability v € P+(N) then P = p x v. More generally,
suppose that that h € Fun(M x N)sq with [ h(z,y)dv(y) = 1 for every x. Then K(z,dy) =
h(z,y) dv(y) is a probability kernel and v x K = hdu X v.

Conditional Expectation for Kernels Suppose that K is a probability Kernel from M to N, and
consider the following data:

* (0, %q,P) is a probability space.
* X:Q— MY :Q — N are measurable; let 7 = (X,Y): Q — M x N.

o u=XPn=ZP.

Propos1t10n 7.2.3. Assume that n = p x K. Then for every h € Fun(M x N) such that
h(Z) € £'(P) it holds

Ep(h(2) !Uazggen.(X))(w)I/h(X(w),y)'K(X(W),dy) P-a.e.(w)

Proof. Since E (|h|) —IEP(|h|oZ) < 00, h € £'(y) and thus E, (|A]) = [ (fN|h| ) K (z dy)) du(z).

It follows that f(z) := [, h(z,y)K(z,dy) is in £'(u), hence f(X) € L(Q, 0wy gen (X),P). For
A € By we compute

Ep(hoZ;X1A):/h]1AxNoZdIP’:/h]leNdn/ 1, (/ h(a:,y)K(x,dy)) du()
M N
- /M Laf dp = Es(f o X; X1 A),

By uniqueness of the conditional expectation we deduce Ep(h(X,Y) | 0oy gen (X)) (w) = fo
X(w) P-a.e. |

Example 7.2.2. XY independent r.v. on ) with distributions u,v. Then n = p x v and for
f e 2LY(R?),

Ep(f(X,Y)|0uggen (X /f y)dv(y) P-a.e(x)
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Markov Operators. Given a probability kernel K from M to N, it defines naturally an operator?

g € Fun(N)so = Ko(o)i= [ o) (z.dy),
By lemma 7.2.1 Kg € Fun(M), and clearly K is linear. Note also that
B e By = Klp(x) = /]lB(a:)K(x, dy) = K (z, B)

and thus the operator completely determines the kernel. For this reason we’ll not distinguish
between the kernel and the operator that it defines.

Now suppose that K : Fun(N)sqg — Fun(M)so, L : Fun(Q)so — Fun(N)s, are proba-
bility kernels: then we can obtain a new probability kernel L o K : Fun(Q)s¢ — Fun (M) by
composing the operators. Observe,

h € Fun(Q)so = Lo Kh(z) = LIKR)(z) = / ( / h(2)K (y, dz))K(a:, dy)
and in particular

CeRBqg=LK(z,C) = /L(m,C)K(dy,x).

The composition is associative, by Tonelli’s theorem.
We’ll specialize in the case of a probability transition, i.e. P probability kernel from M to
itself, and note that now we can iterate P:

Id n=>0
n20—>P” = n times

1

Po---P n>1.

Note that P? = §,Vx, and forn > 1, f € Fun (M),
Pnf(l') = /Pnf(UO) d5$(u0) = / (/P”_lf(ul)P(uo,dul))éx(uo) — ..
= / e / f(un) P(up—1, duy) P(up—2, dty—1) - - - P(ug, duy) dd, (uo)

and in particular, if €, : M™*! — M is the projection in the last coordinate, then

en((0s X P)x--+) x P=P"(z,-) Vn. (7.2)

n

We are ready for the following.

Theorem 7.2.4 (Ionescu-Tulcea). Let (M, %y, p) be a probability space and P a transition proba-
bility kernel. Then there exists a unique probability P = P, € P (Q) such that

1. XoP =

IThe use of the same letter as the kernel to denote the operator is usual.
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2. XPP(dug, -+, du,) = p(dug)P(ug, duy) « - - P(un—1,duy,) (e. XfP = (ux P)x--) x P).

n

In other words, Vn > 0, f € Fun (M), it holds
[ FC) - X ) d(w) =

/- . -/f(uo, oo U )P (g1, dug) P(ug—o, dtuy, 1) - - - P(ug, duy) dp(uo)

Proof. The proof was already given: see example 7.1.1 using v,, = (u x P) X - - ) X P) [ |

n

The operator P : Fun (M) © associated to a probability transition kernel is what is called
a Markov operator. Observe that P1 = 1 and P preserves the cone of non-negative functions.
It follows that if f € Fun(M) is bounded, then Pf is bounded as well. We can use P :
Fun(M), © to define P* : M(M) © by

Pru(f) = pw(Pf) pe€ (M), f € Fun(M)s,
which sends P+ (M) to itself. It is direct to check the equality
oP, = Pp.,. (7.3)

Definition 7.2.3. v € P+ (M) is P- stationary if P*v = v. We denote €31 p(M) the set of P-
stationary measures on M.

Corollary 7.2.5. If puis P - stationary, then P,, € P, (12).

Theorem theorem 7.2.4 allows us to interpret dynamically the pair (i, P): we start with
some initial distribution of the points x € M (the measure 1) and then for A € 9%, the quantity
P(z, A) represents the probability of = entering into A. The new disrtribution is now P*p, but
the transitions are the same. And so on...If the initial distribution is stationary, then it remains
invariant over time.

Example 7.2.3. If u =, then P, := Ps_ represents the dynamics of a particle that starts at x, and
then has transitions determined by the kernel P. Note that for f € Fun (M),

P f(z) = Ep,(f o Xn) = Ex,p.(f).
Moreover, by the uniqueness part of the theorem we deduce that if ;n € Pv (M), then
m:/mw@.

Let us conclude this part by discussing the existence of stationary measures; for this we’ll
assume that M is a compact metric space.

Definition 7.2.4. We say that the Markov operator P has the Feller property if sends C(M) to itself.

Proposition 7.2.6. If P has the Feller property then €34 p(M) # ().

Proof. Take v € P#(M) and observe that any accumulation point of {1 >}7/(P*)¥}, is an

stationary probability measure. [ |

pdcarrasco@mat.ufmg.br



7.3 Dynamical Processes 107

7.3 Dynamical Processes

In this part we consider the case S = {1,...,d} : the state space in this case is usually called the
alphabet. It is clear that if X : 2 — S is a r.v,, then its distribution is determined by an element in

d
A== pa)ipi20,) pi=1}
=1

Now suppose that 7" : (M, %y, 1) © is a dynamical system: in general the associated process
(Z, = T"), won't fall in the category that we are looking at, since M is seldom finite. We can
however define a related finite-valued process using some additional data.

Definition 7.3.1. P = {P,,..., Py} C By is a (finite) partition of M if M =, U, P, and for every
i # j, (P N Pj) = 0. The sets P, are the atoms of the partition P, and for finite partitions we will
assume that every atom has positive measure. Sometimes the partition is ordered, and in this case
we write P = (P, ..., Py).

The point is that in general, determining any data about a simple event z is difficult, and it is
much more realistic to determine, given a partition P, to which atom of P the event = belongs to:
this atom will be denoted as P(x). A natural idea that follows is to use the partition to code the
orbits of the points x € M under T, by specifying the elements of P that O(x) visits. Namely, for
x we'll specify x € Q with the rule

T, =i T've P, (~xeT™"P)

This sequence is well defined - a.e. and is called the itinerary of x in P. Denote by ® : M —
Qr = {1,---,d}" the map ®(z) = .

Question. When ® can be inverted? In other words, given a sequence x: can we recover x with the
itinerary given by x?
To be able to answer this let us introduce some concepts and notation.

Definition 7.3.2. If P, Q are partitions of (M, By, i) we say that P is finer than q (denoted Q < P)
if every atom of Q is union of atoms of P. We denote P \ Q the smallest partition that is finer than
both P and Q, i.e.

PVvQ={PNQ;: P eP,Q, €Q}.

The above definition extends naturally to a finite number of partitions.

Remark 7.3.1. P>Q& PVQ=P.

If (P,), is a sequence of increasing partitions, one would like to make sense of the object
V", P,,. For this observe that given a finite partition P,

Pi=o (P) = {finite unions of atoms of P}

alg.gen.

and in particular, it is a finite o -algebra. Conversely, given .A C %), a finite o -algebra, then it
determines a partition of M

Py= \/ {Av AC}

AeA
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such that P, = A. Thus,

finite partitions of M ~ finite sub o - algebras of %y,

With this idea we can define

\/ Pn = \/ /P\n - O-alg.gf:m(U Pn) (74)

n>0 n>0 n>0

One could ask if given a sub o -algebra A C %), there exists a (non necessarily finite)
partition P4 such that P4 = A. This is true for countable generated o -algebras as \/, ., P,: if
A =04, (A; i n € N) define

Pa={(A4r:x€{.c}}

Then P4 C A, and clearly it is pairwise disjoint. If z € M define B,(x) to be either A, or A¢,
depending on which set x belongs to; it follows

r €| |Bux) EPy = MC UH

n>0 P;eP 4

and P 4 is a partition of M in lemma 9.1.2 we’ll show that P4, = .A. We deduce that, as for finite
ones, there is a one to one correspondence between countable generated partitions and sub
o -algebras of %).

Nonetheless, this correspondence doesn’t extend to arbitrary sub o -algebras; we’ll study with
detail this fact in chapter 9.

Let us return to dynamics. Since 7' : M ‘O is measure preserving (non-singular is enough) the
family T-'P = {T-'A : A € P} is a partition of M. By induction we can use 7' to induce partitions
of the form \/”" T7%P,0 < n < m, and if furthermore we assume 7 to be an automorphism, then
n,m € Z are also allowed.

In particular,

n—1
P, :=\/ TP ={Py.;, =N}, TP, : P, € P}
k=0
and for p-a.e.(z)

x € Py, &rve b, Tr e il,---,T”_lePi

07

n—1"°

Figure 7.1: Above, x € Py — Py +— Py +— Py +— Py P, 50 x = .421543 - - -
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The stochastic process (€2, B, P = dpu) is the dynamical process associated to (7, P). In the
literature it is commom to make the following abbreviation.

Definition 7.3.3. A (dynamical) process is a pair (T,P) where
o T: (M, By, 1) O is a dynamical system.
* P finite partition of M.

Remark 7.3.2. Typically it is assumed that T is an automorphism; we’ll make this explicit when
used.

Denote
P = \/ T "P (7.5)
n>0
Pt .= \/TiP (T automorphism) (7.6)
0

Definition 7.3.4. P~ is the standard past of P, while P* is its standard future.

Note that P is T-invariant (meaning 7 'P~ C P~). The relation between ergodic theory and
probability is given by the next proposition, which follows directly from our previous discussion.

Proposition 7.3.1. If (T,P) is a dynamical process then o : (2, %Bq,P) © is a factor of T :
(M,P~, u) ©O. More precisely, the map ® : (M,P~, u) — (€2, Bq, P) given by

®(x) = x = itinerary of x according to P
verifies o T = o o .
Note that in principle P~ could be smaller than %), so 7" is not really a shift. The case when

this holds is important.

Definition 7.3.5. A partition P is a generator for T if \/ _, T "P = By where

nen

* A = Nif T is a non-invertible endomorphism.

* A =7Zif T is an automorphism. In this case, if \/ . T "P = 9B\ we call P a strong generator

for T.

neN

Corollary 7.3.2. If (T, P) is a dynamical process where P is a generator, then T : (M, By, p) O and
o (Q,Bq,P) O are semi-conjugated.

When are they conjugate? Assuming some regularity condition on (M, %Ay, i), for example
if M is a separable complete metric space (from the time being we’ll call these type of spaces
regular) then ® induces an isomorphism if we complete %), and %g,. In this case we’ll say that T’
and o are conjugate mod 0.

Corollary 7.3.3. Let (T,P), (S, Q) be two dynamical processes acting on regular spaces M, N with
#P = #Q, where P, Q are generators. If they have the distribution, then T and S are isomorphic
mod 0.
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Proof. In the case of a regular space, the completion of %, is equal mod 0 to the completion of
P~; on the other hand, if we denote for x € M by P,(x) the atom of P, that contains z, then
Pu(z) —— {2} p-ae.
n—oo
This is explained carefully in Chapter 9 (see corollary 7.3.3 and the discussion of Lebesgue
spaces), but for now the reader can take it as a fact.
It follows that the natural map from M to the dynamical process of (7, P) is injective, modulo

zero sets, and therefore we conclude that (7', P) is conjugate mod 0 to its dynamical process. The
corollary is proven. [

The previous corollary also tells us that all relevant information (7'.P) (assuming P generator
with k atoms) is encoded in the distribution P that it determines on 2 = {1,--- , k}". A fruitful
point of view is that actually IP is determined by the relative frequencies of words appearing in €.
This is just the ET (cf. (3.1)): given A € B, w € Q,n € N consider

:#{0§i<n:ai(w)€A}

n

Ti(7)

and note that if A = [sg,- - , s,,,] then

= An]lA(w)

1
h(w) = ﬁ#{so -+ 8, appears in wq - - - Wy_1}.

Assuming that the process is ergodic, by the ET we have that the relative frequency 74(w) =
lim,, 7% (w) exists and is equal to P(A) for P-almost every w, for any finite word s - - - s, with
s; € {1,--- ,k}. Thus we can read P([so, - - , S,,]) from the frequency that this word appears in
almost every sequence in 2.

Let us say something in the case of automorphisms. Note that in Q = SZ, the partition by
cilinders P = {[i] : 1 < ¢ < d} is a strong generator for the shift map. Moreover, ¢"P is measurable,
for any n > 0. It follows that

e o7lP~ CP,

« 0"P~ {} Bq.
Definition 7.3.6. Let T : (M, %y, 1) O be an automorphism of a regular space. A o -algebra
A C By is said to be

1. T-invariantif T~'A C A.

2. exhaustive if T" A1 By as n — <.

Corollary 7.3.4. If T : (M, By, i) O be an automorphism of a regular space and P is a generator;
then P~ is a exhaustive o -algebra.

Remark 7.3.3. Note that in the shift example above, one can check that

P_ = O-(ng.ge'rzA(M/]'(s)c(i) . T E Qk)
P+ = O’alg.gen.(mflgc(g) X G Qk)
BV B = Bq  the “partition by points”
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7.3.1 Bernoulli Processes: independence

Here we’ll consider the most “chaotic” type of system. We continue to assume that S = {1,...,d}.

Definition 7.3.7. A stochastic process (X,, : Q@ — S)nen, A = N or Z is a Bernoulli shift if the
variables are independent and and identically distributed. Equivalently, its distribution P is the
product p where p, is the distribution of X, on S.

Clearly a Bernoulli shift is stationary. We already encountered these in chapter 3 where we
used the notation Ber(p, - - ,pq) to denote the natural representation of (X,,),.

Definition 7.3.8. If T': (M, 3By, 1) O is a dynamical system we say that T is a Bernoulli shift if
there exists a generator P such that the process associated to (7', P) is a Bernoulli shift.

Note that for a generator P, the fact that the induced process is a Bernoulli shift is equivalent to
indpedence of the partitions {7~"P},. If M is regular then we obtain the following consequence
of corollary 7.3.2 (and its remarks below).

Corollary 7.3.5. A dynamical system T : (M, %, 1) O is a Bernoulli shift iff it is conjugate
(mod 0) to o : Ber(py, - ,px) O.

Sometimes the Corollary above is taken as the definition of Bernoulli shift; note however the
regularity condition assumed on M (in particular, completeness of ).

Example 7.3.1 (Random Walks in 7Z).
Now we want to address the following.
Question. How can we detect Bernoulli shifts?
Consider the following:
1. Let A : T? © be an hyperbolic matrix,  the Haar measure. Is (A, ;1) a Bernoulli system?

2. Consider S an hyperbolic compact surface, M = T1.S and T' = ¢, where (¢;), : M © is the
geodesic flow. If 4 is the Liouville measure on M, is (7, 1) Bernoulli?

3. Consider A : T? © be an ergodic (wrt i the Haar measure) automorphism. Is (4, )
Bernoulli?

4. Let ¥ = {—1,1}* and M = ¥ x X. Let p be the product of {34; + 16_,}” and define
T(w,z) = (ow,0“°x)
Is (T, w) Bernoulli?

The answer of 1,2 is yes: this is a famous result due to Ornstein and Weiss [19]. For 3 the
answer is also yes, but this more surprising (in particular, nobody said that A is irreducible) [13].
On the other hand, 4 is false, although it looks as the most “Bernoulli” example of all of them
[11]. The lesson that we learn is that these type of questions are tricky.

Definition 7.3.9. Let T be an Bernoulli automorphism. If P is a generator (but not necessarily the
{T~"P},, are independent) we say that (T,P) is a B-process.

pdcarrasco@mat.ufmg.br



112 Stationary Stochastic Processes 7.3

Theorem 7.3.6 (Ornstein). Let T' be a Bernoulli shift and Q be a finite partition. Then there exists
P finite so that:

1. {T"P},ez are independent.

2.\ TP =\ TQ

n=—oo

Corollary 7.3.7. If T is a Bernoulli shift and P is a finite partition, then (T, P) is (isomorphic to) a
B-process.

7.3.2 Markov Chains

Let (2, %Bq, 1) be a probability space. We say that an stochastic process (X, : (2 — 5), is an
homogeneous Markov Chain (with respect to the natural filtration) relative to some transition
probability P if

vn > 07 f S OJ%‘I’L(S)zQ,Pf(Xn) - E/L(f(XTL—O—l) | X07 to 7Xn)

Above we denoted E,,(- | Xo,- -, X)) = E,(* | Ourggen. (X0, -+, Xy)). The disribution v = Xypu is
the initial distribution of the chain. Equivalently, for every ' € Fun(Q,)>0,

/F(XO,-~Xn) d,u:/~--/F(u0,-~ U ) Py, duy,) - - - P(ug, duy) dv(ug)

From theorem 7.2.4 we deduce directly:

Corollary 7.3.8. Given v € P+(S) and P a transition probability on S, there exists homogeneous
Markov chain with initial distribution v and transitions given by P. If S is nice, then this Markov
Chain is unique modulo isomorphism.

Definition 7.3.10. For x € S the Markov Chain on Q = S (resp. Q = S?%) with initial distribituion
d, 1s denoted as (2, Bq, P,). We say that (2, Bq, {P. }+cs) is the canonical Markov chain associated
to P.

Note that P, corresponds to a Markov Chain that starts from the point = and has transitions
given by P.

Proposition 7.3.9. Let h € Fun(§2)s,. Then for every z € S,

Ep, (hoo"|Xo, -+, Xpn)(w) =Ep, (h) P,-a.e.(w).
Proof. It suffices to assume h(w) = f(wo, - ,wi) with f € Fun(Qx)so (i.e. h = fon}) and then
argue by approximation. Then hoo™ = foY whereY : Q — Q is given by Y (w) = (wp, -+ , Wnik)-
Let also X = 7y and consider ¢ = (X,Y) : Q — Q,, x Q4. Define Q := &P, € P+ (2, x Q) and

denote

vy = 7T6]P>m = 5x(du0)P(u0, dul) e P(Uj_l,de>.
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We have the following conmutative diagram

Q—QEQH XQk a(u07"'un7t07"' ;tk’) :OZ(UQ,"' ,Un,tl,“' 7tk)7

\\O‘l
n+k
o

Qn-i—k
and in particular

Oé*Q = Un+k = 5I(du0)P(u’07 dul) T P(un—la dun) P(un—la dun) o P(un—‘rk—la dun+k)l .

k terms
If we consider the section 3 : Q,.x — €, X Q. of «,
B(Uo, T 7un+k) = (Uo, oty Uny Up, Up41, " 0 7un+k>7

then Q = S.v,.x = v, x K where K is the probability transition kernel with associated Markov
operator K : Fun(Q,) = Fun(2,),

Kg(ty, - ,t,) = /"'/g(tn,uh“' ) Pug—1, duyg) - - P(ug, dug) P(t,, duy) = Py, (go ).

It follows by proposition 7.2.3,
Ep,(hoo™ | %Bg)(w) = Ep,(f 0 Y | Outg.gen. (X)) (w)

= /f(uo, o) K (X (w), dug, -+, dug) = Py, ) ().

We’ll specialize now in the case when S is finite; however, as the reader is probably well
aware, the study of Markov Chain is on itself almost a branch of mathematics. We refer the
reader to [24] for further developments.

Convention. : From the rest of this part, S = {1,--- ,d} is finite.

Note that with this hypothesis, if P is probability transition kernel then for every x we have
that P(z,-) is a probability distribution on S, hence it is completely determined by the state
transitions P(x,y) for z,y € S. It is customary then to denote the elements of S by the letters
i, j, étc, and consider the transition matrix

P = (P(i,5))1<ij<d

This matrix & is what is called an stochastic matrix: its entries are non-negative and the sum of
the elements of each of its rows is equal to one. In a finite state space, the concepts of probability
transition kernel and stochastic matrix are interchengable. Observe:

Remark 7.3.4.

1. If f: S — R, then Pf(i) = Z?Zl P(i,7)f(4). Writing fe R? for the vector defined by f, we
get ﬁf = @f
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2. The transitions corresponding to the kernel P™ are given by the matrix P - P - - - P.
I — |

n times

3. If v € A (i.e. a probability distribution on S) then

d

Pu(f)=v()_ Pli.j)f() = Y v(i)P(i.j)f(j)

i=1 ij
We denote T € R? the (co)vector defined by v. Then,
(P =7"P ~ P D=0

In particular v is stationary if and only if vV is a right eigen-vector of & corresponding to the
eigen-value 1

Let us now construct the canonical representation (2, Bq,P,) corresponding to an initial
distribution v, and observe that (X,,), is a (finite homogeneous) Markov Chain with

PV(Xn+l = ]’XO e Xn)(w) = EIP’#(]I[J'] © Xn+l|X0a e 7Xn)(w) = P(]l[j])(wn) = P(Wnaj)
Note also that 7 = (v(mg = 1),--- ,v(my = d)) and hence
PV<X61 = ig s Zn) = Viop(’io, Zl> e P(Z'nfl, Zn)

If v is stationary, then P, is o - invariant, and in particular P,(X,, = i) = P,(X, = ) for every
n > 0.
Define Ty = (T(4, j))1<i j<a € Maty({0, 1}) by the rule

T(i,j) =1« P(i,j) > 0.

T determines a graph, and we can think the dynamics of the chain taking place inside this
graph.

Definition 7.3.11. Given T € Mat,({0, 1}) the subsfhit of finite type (SFT) determined by T is

Qr={we: T, = 1Vn}

n,Wn+1

Lemma 7.3.10. supp(P,) = Qr C Q.

Proof. Take w € Qp, U C ) open neighborhood of w in ). Then there exists m such that
lwo -+ - wm] C U, therefore P,(U) > Pufwy---wn] > 0 and w € supp(Pu). Reciprocally, given
w € supp(p) it holds P, ([wp - - - wy,]) > 0 for every m, thus showing w € Q. |

We'll now focus in the stationary case. Although proposition 7.2.6 implies the existence of an
stationary measure for P, in this case one can give a more elementary argument. Since 21 = 1
we have that 1 € sp(P) = sp(P*). Consider 7 such that ?*/ = © and write v/ = U/t — v/~ with
U* non-negative. Since %* preserves non-negative vectors, necessarily P**. Observe that at
least one of these vectors is non identically zero, say 7. Then iy = mzﬁ € A is a stationary
distribution for P.
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If 7 is a stationary distribution then the corresponding measure P, is the Markov measure
associated to (7, %): in this case it holds

v(i) =Y v(j)P(i,j) Vi.

=1

Observe in particular that if & is positive (P(i,j) > 0 for all 7, j), or even if some power of P is
positive, then v(i) > 0Vi. As P™ represents the m -step transitions, the fact of this matrix being
poisite means that for any pair of states i, j there is path in the associated graph defined by T of
lenght at most m, starting from 7 and ending in j.

Definition 7.3.12. A non-negative matrix A is primitive if there exists m such that A™ is a positive
matrix.

| Convention:. We’ll assume that & is primitive.

We’ll discuss now the uniqueness of the stationary distribution of %.

Lemma 7.3.11 (Brin). Let K C R? be a polyhedron containing the origin on its interior and
A € Mat, such that A(K) C K°. Then p(A) < 1.

Proof. Necessarily p(A) < 1; let A = p(A) and assume by means of contradiction that |\| = 1.
Now )\ cannot be a root of the unity, otherwise changing A by a power we can assume A = 1 and
A has a fix point on 9K, which is impossible since A(K) N 9K = (. Then )\ is irrational, and
therefore there exists a two dimensional subspace £ C R such that A|F is an irrational rotation.
Take any point p € K N E and observe that for some subsequnce (¢(n)), C N, A?™p —p.

This is also impossible since for some open neighboourhood U of 0K, A*™K NU = (). u

Now we can prove.

Proposition 7.3.12. If P is primitive then its stationary distribution v is unique.

Proof. Tt suffices to show that 1 is a simple eigenvalue of %, and since sp(P?™) = {\™ : A € sp(P)}
it is no loss of generality to assume that & is positive. Consider f : A © given by f(V) = P*U
and note that it sends A to its interior. Let 1) be a fix point of f with positive entries, and define
K := A — 5. Applying the previous lemma to f : K ©O we deduce that sp(?*|span{K}) < 1,
but since span { K} is d — 1 dimensional we deduce that 1 is a simple eigenvalue, and all other
eigenvalues of * have modulus less than 1. [

Corollary 7.3.13. Let i/ be the unique stationary distribution of . Then for every ji € A,

(P)'ii —— V.
Proof. We can write ji = v/ + ¥ where ¥ € £ = {y : Zle y; = 0}. The hyperplane E is P*-
invariant and p(2*|F) < 1, thus

(P*)i = 7+ (P*)"T —— 7.

n—oo
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Remark 7.3.5. Above we essentially gave the proof of the Perron-Frobenius theorem for a (stochastic)
primitive matrix: if A is primite we can guarantee the existence of A € sp(A) satisfying

* )\ is simple and positive.
e Nesp(A),N#AA=|N| <A
* )\ has an eigenvector v} with positive entries. This is called the Perron eigenvector of the matrix.

This apparently more general case can be reduced to the stochastic one by the process of relativization:
one first establishes the existence of A > 0,7 > 0 and then considers the stochastic matrix B =
$D'AD where D = diag(vi, -+, vy).

Example 7.3.2. Let us consider the simplest case d = 2. Here the initial distribution is given by a
vector ji = (i, 1 — p)for some 0 < p < 1, whereas the matrix P is of the form

L
q 1-—gq|’

for some 0 < p,q < 1. Thus, for every n > 0 we have

P(X,1=1|X,=0)=p
P(Xpp1 =0] X, =1) =q.

We can then compute
P(X,11=0=P(X,11=0,X,=0)+P(X,,1 =0,X,=1)
=P(X,41=0|X,=0P(X,=0)+P(X,s1 =0| X, =1)P(X, =1)

=1 -pP(Xpt1 =0)+¢P(X, =1)=(1-p—q)P(X,, =0) +¢
and since P(X, = 0) = u, by some simple induction we get

n—1
: 1—(1—p—q)
P(X”:O):<1_p—Q)nM+q<Z(1—p—q)])Z(l—p—q)n—i—q ( P—q)
k=0 p+4q
q q
TETRS "\
which in turn implies
q q
PX,=1)=1—-——")-1—-p—q)" | pp— —
=== a-p-qr (n- L)
p p
:——1—p—q”(1— ——).
Eri i

Since |1 — p — q| < 1, we finally deduce

lim P(X, = 0) = ——
n p+4q
imP(X, =1) = 2
n p+q

and the stationary distribution is v = (51, -k-), as expected.
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7.4 K - systems

For a o -algebra A C %q, its tail o -algebra is

Tait(A) =)\ T A (7.7)
n=01i=n
If P is a (finite) partition, then T« i€ (P) := T (P).
Definition 7.4.1. We say that (T,P) is a K - process if T a1 (P) =p N, _q.

Triviality of the Tail o-algebra is what is called Kolmogorov 0-1 law. For the time being
we’ll assume that the dynamical process is given in its natural representation, hence ) =
{1,---,d}?,P={[i]p: 1 <i<d}and T = o. Observe thatif P = {[i] : 1 <i < k} then

g@tg(P) = ﬂ O’alg4gen.<XTL7 Xn+17 o .>

n>0

Convention. We denote for —oo < n < m < +00, B := 0., ....(X]"). In particular,

B =0 P)

algAgenA(

“+00
B0 = \/ o 'P
=n

Example 7.4.1. Bernoulli shifts are K-systems. The algebra A = J,~, 8", generates Bq, given
A € Bq we can find a sequence B,, € B™  such that lim,, P(AAB,,) = 0. Assume that A €
Tatt = (), B>, and note that since T a1t and B™, are independent, P(AN B,,) = P(A) -
P(B,,). On the other hand,

P(AAB,,) + P(ANB,,) =P(AUB,,) =P(A) + P(B,,) —P(AN B,,)
= 2P(A) - P(B,,) =P(A) + P(B,,) — P(AAB,,)
= taking lim, P(A)*> =P(A) ... P(A4) € {0,1}.

It turns out that K - systems satisfy a uniform mixing condition, as given below

Proposition 7.4.1. T is a K - system if and only if for every B € %q,
lim sup |[P(ANB)—-P(A)PB)|=0.

" Aemi>e
Proof. Assume first that 7" is a K - system. Then

ap = sup |[P(ANB)—PAPB)| = sup | [ 14 (P(B|BX) - P(B))dP|

AcpFee AERY

< sup ||P(B[ %) — P(B)|s-
Aepe

Since %B° \, T ait, by Doob’s theorem lim, ||P(B | B:°) — P(B)||,: = 0, and the first part follows.
The converse is direct and left as an exercise. [ |
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Corollary 7.4.2. If T'is a K - system then it is strong mixing.

Proof. By lemma 5.2.1 it suffices to show that A € B, then

P(T™"AN A) —— P(A)?

n—oo

Note T"A € BN C B> , and thus

limsup [P(T""AN A) —P(A)? < lim sup |P(CNA)—P(C)P(A)| = 0.

n Ceryr

Let us now go back to the general case T : (M, By, 1) O

Definition 7.4.2. We say that T is a Kolmogorov system (usually abbreviated by saying T is
Kolmogorov ) if for every finite partition P, the process (T, P) is a K - system.

The following is direct.
Lemma 7.4.3. If there exists a generating partition P such that (T,P) is a K system, then T is
Kolmogorov.

For making further progress we’ll cite without proof the following highly non-trivial result
due to Krieger.
Theorem 7.4.4. Suppose that T : (M, By, 1) © is an ergodic system and let A C By be a sub
o -algebra satisfying:

s T7'AC A
Then there exists P C A finite generator for T.

Now suppose that we are given a system 7 together with A C %, sub o -algebra such that
K-1 T'AC A
K-2 T"(A) / By
K-3 T(A) \ N

It is an exercise for the reader that in this case the system is ergodic, thus by Krieger’s theorem
we can find a finite generator P which by the last property has trivial tail. It follows that 7" is
a Kolmogorov system. Conversely, if 7" is Kolmogorov the o -algebra A := %" __ satisfies the
conditions K-1,K-2 and K-3. In the literature, sometimes the definition of Kolmogorov system is
given in terms of an ¢ -algebra A as before instead of the Tail ¢ -algebra of the process.

Let us assume that 7" is Kolmogorov and consider A satisfying K-1,K-2 and K-3. We denote by
A, =T-nAH, =%*M,A,); then UrH,, C H,_,. For f € L*(By),

lm B, (f | A)Z f

n—-4o00

hmE (f A /fd,u
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Note that we have a sequence of subspaces

C=(\HnC-Hn--Hoy CHo C - L*(By).

We can thus decompose %¥?(%,;) into orthogonal sub-spaces

4
2% (Bu) = C& D Hn© Has, (7.8)

ne”

and for f € C*,

“+oo

f: Z Eu(f|An)_Eu(f|-An+l)

n=—oo

Let us consider (h;);c; orthonormal basis of HooH 1 = L*(A)eZ?(T~'A). Since UrE,(f|A,) =
E,(f oT | A,_1) and by the previous formula, it follows that

{UF'h; -m e Z,j € J}
is an orthonormal basis of C* and T has Lebesgue spectrum.

Proposition 7.4.5 (Rohklin). If M is nice measure space different from a single atom then J is
infinite (i.e. T has Lebesgue spectrum of infinite multiplicity).

Proof. We start by noting that 7-'.A does not contain atoms; otherwise since p is mixing, it is
supported on a fixed point {z} € A. Since T"A * By we get that M = {x}, which contradicts
that M is not a point.

Next we show that £?(A)6%?(T~'.A) is infinite dimensional, which by the previous discussion
concludes the proof. Consider 0 # f € ¥?(A) & L*(T'A) and take B = f~!(R,): observe
that Z2(AN B) e L*(T AN B) C £*(A) © L*(T1A), so it suffices to show that ?(AN B) &
£?(T~' AN B) is infinite dimensional.

Since T-'A N B is non atomic, by a well known argument in measure theory we can find
Cy € T*An Bwith p(C) = 1. Similarly, we can find C, ¢ M \ C; with p(Cs) = @, and
so on. This way we construct an infinite pairwise disjoint sequence (C,,), € T-'A N B, where
w(Cy,) > 0Vn. Finally, observe that {f-1¢, } € £*(ANB)©%?*(T~'ANB) is an infinite orthogonal
family, and thus the later Hilbert space is infinite dimensional. [

Example 7.4.2. A transformation T : (M, %\, 1) O is said to be mixing of order 2 if given
A, B,C € By there exists subsequences (¢(n)),, (¥(n)), C N such that

* l¢(n) —(n)] —— oo

n—o0

* W(ANTPMIBNTVIC) —— u(A)p(B)u(C).

n—oo

It is a result of Rohklin that K systems are mixing of order 2. As far as I understand, it is not known
if mixing implies mixing of order two.
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7.5 Weak and Very Weak Bernoulli Systems

We'll present a couple of additional types of processes for completeness, as we won’t study these
in the course. The reader can consult the monographs [18, 28] for details. For the following we
use the definitions of distance between processes given in Appendix C. The notion of ¢ - indepence
(section 8.1.2) is latent, but not mentioned.

Consider (7', P) a dynamical process, P being a generator, and 7" ergodic. Observe that we
can re-phrase the definition of Bernoulli process saying that for every n € N, the partition P is
independent of V_,T*. For a given partition P (or o -algebra), let us say that a property holds
e-a.e.atom P € P if exists A that is P measurable, with ;(A) > 1 — e where the property holds.

Definition 7.5.1. The system (T, P) is said to be

1. Weak Bernoulli (W.B.) if given ¢ > 0 there exists m > 0 so that for every n, for e-a.c.atom
P € ViZiT 7 it holds

d(\ViEmTRp PRI PY < e

2. Very Weak Bernoulli (V.W.B.) if given ¢ > 0 there exists m > 0 so that for every n, for
e-a.e.atom P € Vi ;T7¥ it holds

AV TR VAT TRP|P) < e

Observe that Bernoulli = W.B.= V.W.B.=- Kolomogorov system.

Theorem 7.5.1. Consider a dynamical process (T, P), where P is not necessarily a generator.
1) - Friedman and Ornstein: if P ergodic generator, then T is Bernoulli.
2) - Ornstein and Weiss: if T is Bernoulli, then P is V.W.B.

In the second part, it is not true in general that P is W.B.

Example 7.5.1. Suppose that f : (M, ;) O is a conservative Anosov system of class C*(M). Let P
be a partition with piecewise smooth boundaries. Then it is a result of Azencott and Bowen that P is
W.B.

The idea of the proof is to use the Markov partition for hyperbolic maps: there exists a SFT
Y4, and a Holder semi-conjugacy h : (0,3 4) — (f, M) that is uniformly bounded to one, and one
to one on the pre-image of a generic set. This allows to translate Ergodic Theory questions on the
system (f, i), to the much more manageable shift space. The fact P is piecewise smooth permits to
approximate it by partitions that behave nicely with respect to h. Lifting everything, one then has to
show that the partition Q by cylinders is W.B. (we remark that . does not lift to a Markov measure
in general?®). In any case, using tools from thermodynamic formalism, one shows that

a(m) = sup d(VFTHRQ, ViZAT Q) < C exp(—cm)

n>0 -

where C, ¢ > 0. This shows that Q is W.B.

2/, is the SRB, if that makes sense to you
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7.6 Degree of Randomness

We have been studying different types of systems, particularly the following:
1. Bernoulli systems.
. Kolmogorov systems.

. Systems with Lebesgue spectrum.

. Mixing systems

2
3
4. Systems with absolutely continuous spectrum
S
6. Weak mixing systems.

7

. Ergodic systems.

We have proven that, in the list above, these categories are ordered by inclusion (Bernoulli
systems are Kolmogorov, Kolmogorov systems hae Lebesgue spectrum, and so on). In this short
part we show that the inclusions are strict.

Bernoulli systems C Kolmogorov systems. The first of example of a Kolmogorov system
that is not Bernoulli was given (in a tour de force) by Ornstein on a shift space [19]. Later Katok
gave a differentiable (conservative) example [12].

Bernoulli systems are the “most” chaotic system in the list. It is interesting to point out that in
any compact manifold (which is not the circle) there are conservative Bernoulli systems.

Theorem 7.6.1 (Katok, Dolgopyat-Pesin). Let M be a compact boundaryless manifold of dimension
greater than one. Then there exists f € Dif£°°(M) preserving a smooth volume p such that (f, i)
is a Bernoulli shift.

Kolmogorov systems C Systems with Lebesgue spectrum. It turns out that the time-one
map of the horocycle flow corresponding to an hyperbolic surface of constant negative curvature
has (infinite) Lebesgue spectrum. However, this system cannot be Kolmogorov, as it has zero
entropy.

Systems with Lebesgue spectrum = Systems with absolutely continuous spectrum? No
examples are known.

Systems with absolutely continuous spectrum C mixing systems. Given a symmetric
and positive definite matrix & = (P;;)1<; j<, consider the measure p, € P+ (R") given by

fin = Cp * PA

where ) is the Lebesgue measure, p(z) = exp({(—3% 'z, z)) and ¢, is chosen so u(R") = 1.
Letting X; : R® — R the projection, it is direct to check that E,(X;) = 0 (centered case).
Furthermore,

COV(XZ', X]) = .PZ]
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This is proven (guided exercise) in Mafiés book [15], and in many other places.

Now suppose that & = (P;;)1<i j<c is such that for every n its restriction |1 < i,j < nis
symmetric and definite positive; it is not hard to show that the family of distributions {, },>1
satisfy the compatibility conditions of theorem 7.2.4, and therefore there exists (a unique) process
in 2 = R* having these finite dimensional distributions.

Observe that by the covariance formula above, the coefficients of % are completely determined
by the measure p. Since oy is given by the infinite matrix (Q; ; = Pit1,j+1)1<i,j<00, We deduce by
the uniquess part in Ionescu-Tulcea theorem that ;. is o invariant if and only if

Pipj=PF; V1<i,j.
Assuming stationary regime, observe that & is determined by a sequence (a,,),>o,

P

ij = Qli—j]-

Definition 7.6.1. (a,),>o is the covariance sequence of the process.

Observe that a,, = P,y = (U" Xy, Xo) is the n-th Fourier coefficient of the spectral measure
corresponding to X,. By approximation it follows that if lim, ,,, a, = 0 then the system is
weak-mixing. In fact, it is strong mixing (theorem 10.4 in [15]). Howwever, we have the
following.

Proposition 7.6.2. There exist positive definite sequences {a, },>0 C ¢y that are not the sequence of
Fourier coefficients of a probability measure v € P+ (T) that is absolute continuous with respect to
Lebesgue. In particular, there exist Gaussian processses that are mixing but do not have Lebesgue
spectrum.

Proof. Let Leb be the Lebesgue measure on T and consider £ = £(T, Leb), 2~ = £>(T, Leb)
with the natural pairing (-, ) : £ x £! — C,

(f. ) = / 7gdLeb.

Recall also that we can identify c,* = ¢, via

[e.e]

¢ e’ = ) =) dur

n=0

for some (a,), € ¢;. Define A : £' — ¢, by A(g)(n) = [ e(—nt)g(t) d¢; it is a bounded linear
operator. Its adjoint A* : ¢/; — £ can be computed as follows: for a € /; and g € &*,

(A%a, g,=)a(Ag) = Zan/ —nt)g(t)dt = /Zan (nt)g
n>0

and therefore A*(a) = ) . ase(n:). Clearly the image of A* contains all the trigonometric
polynomials; however we claim that f(¢) = ¢ is not the image of A*. Indeed, if

t= Z ane(nt) = a, = /te(—mf)dt

n>0
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For n # 0 we get

1 1

e(—nt) 1
Ay = W(Qﬂ'nt — 1)’0 =

4mn?2  2mn

contradicting the fact that (a,), € ¢;. Note that since trigonometric polynomials are dense in
£ the above implies that Im(A*) is not closed. Since Im(A*) is closed if and only if Im(A) is
closed (Closed Range theorem), it follows in particular that A cannot be surjective. [

Mixing C weak-mixing systems This has already been disussed in section 5.3.

Weak-mixing C ergodic systems Ergodic translations in abelian groups (say, irrational
rotations) are never weak-mixing.

Exercises

1. Show that given a probability I’ on 2 = S¥ there exists a process with distribution P.
2. Show that if T is a Bernoulli shift and k € N there exists a Bernoulli shift S so that S¥ = T.
3. For a process (7, P) (P ergodic generator), show the following.

(a) (7,P)is W.B. iff given € > 0 there exists m > 0 such that for every n exists A4, that is
Vi Tkp measurable, and satisfying.
e u(A,) >1—e
* For every atom P € V{"""T*p, P C A, one canfindamap ¢: P —+ M and Q C P

k=m

of relative measure > 1 — ¢ such that
x € Q = T"z, T"¢(z) are in the same atom of P, V0 < k < n — 1 (7.9)

(b) (7,P) is V.W.B. iff given € > 0 there exists m > 0 satisying a similar condition as above,
but changing (7.9) by

x € Q = TFz, T"¢(x) are in the same atom of P
forall 0 < k < n — 1, except no more than en indexes
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CHAPTER 8

Metric Entropy of a Transformation

Throughout this chapter (M, %Ay, ;1) will denote a fixed probability space.

8.1 Information and entropy for Finite Partitions

In this section all partitions are finite. As was mentioned before, determining any data about a
simple event x is difficult, and one opts for determine, given a partition P, to which atom of P the
event = belongs; knowing the atom P(z) gives us some information. This notion is formalized by
assigning some positive value to each atom as follows.

Definition 8.1.1. The information of P is the measurable function defined as

I, (P) () = —log u(P(x))

Clearly I, (P) is a simple function. The choice of the positive value assigned to each atom is
made so that this function satisfies certain natural additivity conditions. We will also consider
the average of the information.

Definition 8.1.2. The entropy of P = {Py,--- , P} is

k
4, 7) = [ 1,0 du= =Y n(P) - log ()

We can interpret H,, (P) as the average information gained by knowing in which atom of P
our simple events are.

Now suppose that P is a partition of M and A € %) is of positive measure. Then P4, = {P,NA}
is a partition of A and in particular we can compute I, (P),H,, (P) (no risk of confusion arises
here by writing P = P4).

Definition 8.1.3. Let P, Q partitions.

1. The information of P conditioned to Q is
I, (PQ) () := —log pig() P(x)

2. The entropy of P conditioned to Q is

H, (P|Q) == / 1, (P[Q) (z) du(x).
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We interpret H, (P|Q) as the average information gained by knowing P, provided that we
already know Q. Note

« (PlQ) = Zloqu ) Lpng, = Z (— > log g, (F) - 1lp,i> 1g,

and thus

. (PlQ) = Z ) - 1g, (8.1)

. (P|Q) = Z“ Q;) - Hug ( (8.2)

Recall: (cf. Appendix). If Q = {Q,}; partition and f € Fun(M)s, then

E,(f]Q) = ( / fdqu) 1o,

and in particular for f=14

n(AQ) :=E,(14[Q) = ZMQJ ) - 1o,
We deduce

« (PIQ) = Z( > _log g, (P 11@) Lp,

which in turn implies

I, (PIQ) = > —logu(PiQ) - 1p, (8.3)

i

L (P|Q) = /Zlogu (P|Q) - Lp, - dpu = /Z w(P|Q) - log u(PiQ) - d (8.4)

where in the last equality we have used that for every i, log u(P;|Q) € 2°(Q).
We will now establish some basic properties of the functions I, (P|Q),H, (P|Q).

Recall: (Jensen’s inequality (proposition A.4.1)). Let C C By be a o -algebra and f € &' (or in
Fun(M)sg). If ¢ : R — R is concave and ¢(f) € L' then

E, (60 fIC) < G(E.(fIC) p-ac.

In ¢ is strictly concave then we have equality if and only if f is C -measurable.
Particular case: It holds

[oosansol[ saw

If ¢ is strictly concave we have equality if and only if f is constant - a.e.
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Example 8.1.1. Let ty,...,t, € R, Ay, ..., A\, > 0with ), \; = 1. If ¢ is concave then
D o No(t) < oD Aita).

If moreover ¢ strictly concave, there is equality if and only if t; = - - - = t,,.

This follows by applying the particular case of Jensen to M = {t1,...,tx}, p = >, \;o,,and
f=1inc: M — R.

8.1.1 Properties of the Entropy

Consider the real function

90(56)—{0 vy

—xloge x>0

Then ¢ is strictly concave and continuous on [0, +0c0). Note that for P = {PF},, H,(P) =

> p(p(h)).

Let P, Q, R be partitions. Then we have the following properties.

P-1. For P = {P}F ,, it holds H, (P) < log k. There is equality if and only if u(P;) = --- = u(B,) (=
1/k).

Proof. This is consequence of the inequality in example 8.1.1:
1 1 1 1
plogk=p(r) =9 (Z Eu(H)) ti=pu(P), A\ =

1 1
> relu(P) = 71 (P).

|

P-2. Addition formula:
I,(PVQR)=1I,(PR)+1I,(QPVR) (8.5)
={H, (PVQR) =H, (P|R) +H, (QP VR) (8.6)

Proof. Let us first assume that R = N, _,. Then

I,(PVQ) = Z]lmeJ log (PN Q) = Z]IQJ<Z logu(PZ-)+logupi(Qj))]lpi)

=L (P) + 1, (QP).

Using the particular case and section 8.1,

P \% Q’R‘ Z IMR P 2 Q NRk Z :uRk P +1 (IURk) Q‘P> ’ ﬂuRk

=T1,(PR)+1,(QPVR).
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128 Metric Entropy of a Transformation 8.1

P-3.

H, (PIg) =0 <P < Q.

Proof. The quantity H, (P|Q) = >_; ,U(Qj)Hqu (P) is equal to zero if and only if Hyg, (P) =0 for
all 7, and this happens if and only if ' '

VJ, P|Q] :{maQJ}
which is an equivalent way of saying that P < Q. [
H, (-|R) is increasing: if P > Q then

I, (QR) < I, (P[R)

H, (Q[r) < H, (P|R)
Proof.

I,(PR) =1, (PVQR) =1, (QR) + I, (QIRVP) > I, (QIR).

. H, (P|-) is decreasing: If R < Q then

B, (P|Q) < H, (P[R).
Proof. By formula (8.4),
H, (PIR) = [ 3 olu(PIR)

Since R < Q, for every f € Fun(M)>, we have E,(f|R) = E,(E,(f|Q)|R) hence in particular
taking f = u(P;|R),

p(Fi|R) = E,(u(FQ)[R) = ¢(u(Pi|R)) < Eu(¢(u(PQ)R) Vi (8.7)
thus

1, BR) = [ S oulPIR) i< [ Y E(o(u(RI) ) du
= [ 3 otutPia) du = 1, (l0).

. It holds

H, (P|Q) < H, (P)
H,(PVQ) <H,(P)+H,(Q)

We have equality in any (all of) the previous formulas if and only if P, Q are independent.

Proof. Using R = N, _,; in the previous part and (8.6), we obtain directly the inequalities. By
strict concavity of ¢, we have equality if and only we have equality in (8.7) for every i. Using
Jensen, this follows if and only if for every i the function u(F;|Q) is N, ., measurable (=
constant). Hence, equality holds if and only if

ViQ, €0, u(PIu(Q;) = / u(PIQ) dy = u(Q; 0 P),

Qj

as we wanted to show. [ |

The inequality for I, (-) is not valid in general. See next figure.
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8.1 Information and entropy for Finite Partitions 129

P Q

Figure 8.1: For M = [0,1]?, » = A and P, Q as in the figure, I, (P) # I, (P|Q).

8.1.2 ¢ - independence.

The material of this part is optional and can be skipped in a first reading.

Definition 8.1.4. Let P, Q be partitions and ¢ > 0. We say that P is e-independent of Q (denoted
P L Qif 3Q. C Qsuch that

#Q@) = 1(Ugseq) <€

and for every Q; € Q., it holds

Z |1(Pi) — pg,(P)| < e

This means that P divides all atoms of Q more or less in the same way than it divides M,
except maybe for a set of atoms of small measure (< ¢).
We first note that even though the definition is not symmetric in P, Q, it almost is.

Lemma 8.1.1. P L€ Q implies Q | V3ep

Proof. We compute,
Z pu(P;) Z Q) — pr (@) = Z 1(@Q)pu(P;) — u(@Q; N Py)| = Z:rg
= (Z + Z) Zx” < Z wa +e Z w(Q;) < Z 20(Q;) + € Z w(Q;) < 3e.
JEQe  JEQe ( JEQe i JEQe JEQe J#Qe

Call P, “bad” if Y [u(Q;) — pur,(Q;)] > v/3¢. By the previous computation,

u(|J P) < V3e

P; bad

Independence on a large portion of the space implies e-independence. This is the context of
the next Lemma.

Lemma 8.1.2. Suppose that X € By, is such that u(X) > 1 — ¢* and P, Q partitions of M satisfying
Py L Qy. Then P L3 Q.
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130 Metric Entropy of a Transformation 8.1

Proof. Consider the family Q := {Q; € Q: u(Q; N X) > (1 —€)u(Q;)}. We claim that x(Q) > 1 —¢;
indeed

L= <pu(X) =D pw@QNX)+ > pu@QNX) < @)+ (1—)u(@Q) =1—e+eu(Q)

Q,;€Q Q,;¢Q

which implies our claim. Consider @; € Q and compute
S () = pg,(P)] <D (PN X) = g, (PNX) [+ Y [(PiNX%) = g, (BNXC)| = Ay + Ay,

For A, using that Px 1 Qy we can write
pPNQ;NX) pX) B NX)u@;NX)
1(X) 1(Q;) n(X)(@Q;)

HQ; (PZ N X) =
and thus

AIZZM(RHX>‘1_ILL(Qij) p@;NX)

(X)) u(Q;) w(X)u(Qj)

We know that p(X) > 1 — €%, ug, (X) > 1 —¢, thus A; <e.
For A, we simply write

= [1(X) = g, (X))

ZM(X)-'l—

Ay < p(X°) + Z ey Z(Qj')m X°) = (X)) + pg,(X) < € + € < 2e.

Hence A; + A; < 3e whenever ), € Q. Since #(Q) >1—¢€>1— 3e we conclude the Lemma. MW

Let us now see the relation between the concepts of ¢- independence and entropy.

Proposition 8.1.3. Given ¢ > 0 there exists 6 > 0 such that if P, Q are finite partitions,

H,(P)—H,(PIQ) <d=P_LQ

Proof (Smorodinsky).
H, (P) - Hu (P’Q) = Z ( log:u Z,u Qj MQJ

)

:Z_<Z“QJ’(H)'” >10gu +ZMQJ (ZMQJ loquJ(P)>
:iaj'Msz)

with j
0= g (Pl "

It follows that H,, (P) — H,, (P|Q) < ¢ implies

Z w@;) < Vo (8.8)

a;>Vs
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We restrict ourselves to values of § < €2.

(xz)z , (y'L)z Satisfying

Now it’s a Calculus Lemma: for finite sequences

al) T 2 O7yz >0

as) 122% > Zyz

we define A((x);, (y:)i) = >_x;log
Claim: Given € > 0 there exists §; such that for all pair of sequences satisfying a;), as) above
it holds

A((ZL’)“ (yz)z) < 51 = Z |IL'Z - yz| < €.

In virtue of (8.8), the previous claim finishes the proof of the Proposition by taking § = min{d;, ¢*}.
To prove it, note that by concavity of the logarithm

1
p(t) ::t—l—logt20:>log¥:1—t—|—p(t) t#0
Choose i < /% and so that p(t) < = |1 —t| < . For z; # 0 we write p; = p($); then

log—:1—y—+Pz‘:>l‘i10g—:$i—yz‘+Pi-
x Y

and for x; = 0 we declare p; := 7. In any case,
A(( szlog— = Z(%—yi)+2m%‘ ZZPi%‘-

We conclude that A((z);, (y;);) < n* implies > _, x; > 1 — . Note that in the previous sum we
can assume z; > 0. Then p; = p(%) < n implies |z; — ;| < fy; and thus

Z |z — il <+ Zyz
pi<n

Now observe,

Dui=> y=> y—wm+y zn>1-n-

pi<n pi<n pi<n pi<n

|
AV
N

if n sufficiently small. We conclude that A((z);, (v;);) < n? implies

Z‘xl y1’<2’$z yz‘+zxz+zyz<6

pi<n pizn pizn
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132 Metric Entropy of a Transformation 8.2

8.2 Countable Partitions and c-algebras

It will be important later to have some more flexibility in the definitions of information and
entropy, specially regarding the conditional ones. We continue denoting (M, %y, 1) a fixed
probability space. In this part partitions are assumed to have (at most) countable many atoms.

Definition 8.2.1. Let P = { P,}, partition of M and C C %\ a o -algebra.

1. The information and entropy of P are respectively

L, (P):=) —logu(P;)-1p, (8.9)
H, (P) :=> —u(P,)logp(P;) = /IM (P) dp (8.10)

i

2. The information and entropy of P conditioned to C are respectively

I, (PC) := Y  —logu(PiC) - 1p, (8.11)
H, (PIC) := Z —/ log u(F|C) dp = / I, (P|C)du (8.12)
i P

The above reduces to definitions 8.1.1 and 8.1.2 in the case where both P and C are finite.
Indeed, if C = 0,,,,...(Q) where Q is a finite partition then

I, (PIC) = 1, (PlQ), H,(P|C) =H, (P|Q).

Based on this we will use the notation I, (P|Q),H, (P|Q) even if Q is a countable partition.

Definition 8.2.2. We denote
% = {partition P : H, (P) < oo}.

Several properties of I, (-),H, (-) generalize directly to countable partitions with exactly the
same proof. For example we have.

Proposition 8.2.1.
1. Let P,Q,R be partitions. It holds

L. (PVQR) = L, (PIQ) + I, (QP V R)
H, (P QIR) = H, (P|0) + K, (Q[P VR).

2. If Q < P then

3. Let P be a partition and C; C C, o -algebras of By Then

H, (P|C1) > H, (P|Co) .
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A

v

-logH(P)

Figure 8.2: Graph of the function \,.

Now we need more technology. The following Lemma is very important, and will allow us to
take limits in terms of algebras.

Lemma 8.2.2 (Chung’s Lemma). Let P € & and C,, ,/* B\ be an increasing sequence of o -algebras.
If f :=sup,{1,(P|C,)} then f € .

Proof. Denote A(t) = u(f > t) the cumulative distribution function of f. Then [ fdu =
Jo° At) dt. We compute

A(t) = p(sup — Z Lp,log u(Pi|Ca) > t) = pu(inf Z 1p, log u(Bi[Cy) < —t)
—Z,uPﬂ{lnf,u(P|C <et ZZMPHQ’
where Q! = {z : u(P|C,) < e, u(Pi|Cx) > e ' for 0 < k < n}. The trick is that the (Q?,), is

a pairwise disjoint family, and furthermore each Q! € C, because the family of o algebras is
increasing. It follows

p(PNQ;,) = / Lpdp = / p(P|Co)dp < e (@)
hence (cf. fig. 8.2),
=2 D wPiNQ,) <) min{u(P), e} =3 Ai(1)
= /deﬂz Z/O N(t)dt = ;(—M(R)logu(]%)+/ o dt) <H,(P)+ 1.

— log p(P;

[e9]

Theorem 8.2.3. Let P € F and consider an increasing sequence of o -algebras C,, /" C.. Then

I,(P|C,) —— I, (P|Cx) both -a.e. and in £*.
n—oo

pdcarrasco@mat.ufmg.br



134 Metric Entropy of a Transformation 8.3

2. H, (P|C,) \yH, (P|Cx).

Proof. Using Doob’s martingale convergence theorem,
Vi, p(BilCn) = i(P|C)  pi-ace.

which implies I, (P|C,) — I, (P|Cs) p-a.e.. By Chung’s Lemma and the DCT we also hace
convergence in £*. [ |

We end this part defining entropy and information for (more) general o -algebras. Recall that
a sub o -algebra A C By is said to be countably generated if there exists {4, }, C A such that
A =0, 0en (U, An). We need the following simple fact.

Lemma 8.2.4. If A is countably generated, then there exists an increasing sequence of finite
partitions (P,),, such that P, / A, in the sense that \/, P, = A.

Now assume that A, C are sub o -algebras of %),; with A countably generated, and assume
that (P, )., (Qx)r are sequences of finite partition converging to A, C as in the previous Lemma.
Fix k and observe that

L, (QklC) < I, (Qk V Py|C) = 1, (Pu|C) + I (Qu[Py V C)
=1, (Q|C) < lim I,, (PuC) + 1, (Qk]AVC) = lim T,, (P,|C)

by theorem 8.2.3. It follows that
lillgn I,(QkC) <limI,(P,|C)

and by symmetry, they are equal. Thus we can define
I,(A|C) :=1limI, (P,|C) (8.13)

where (P,),, is any sequence of finite partitions increasing to .A. We end up this part with the
following.

Proposition 8.2.5. Suppose that A, Ay,C C 9By are countably generated o-algebras. Then

I, (A VAIC) =1,(A|C)+1,(As]A V)
=H, (A V A|C) =H, (A|C) +H, (A2| A1 V).

Proof. The equality holds if C is finite thanks to proposition 8.2.1. Approximating C by finite
partitions and using theorem 8.2.3 the proof follows. [

8.3 Entropy of a map

Now consider 7" : (M, By, p) . For a partition (or a o -algebra ) P we denote

n—1
P'" =P} =PVT 'PV...vT (" Vp=\/T""p (8.14)
k=0

+o0
pt — \/ T Fp (8.15)
k=0
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8.3 Entropy of a map 135

In the case when T is an automorphism we extend further the notation and write

+o0
p-=\/T"P (8.16)
k=0
“+oo
k=—o00

Recall:. If C sub o -algebra and f € &' (or f € Fun(M)s,) then
TE,(f|C) =E,(f o T|IT~'C)
We deduce that if P is a partition, then

I,(PIC)oT =E,(T'P|IT7'C) (8.18)
H, (P|C) =H, (T~'P|T'C) (8.19)

Definition 8.3.1. For P € & we define the metric entropy of T relative to P as

h.(T;P) :=H, (P|T~'PY)

Remark 8.3.1. The o -algebra T—'P* = \/72 T~*P consists of those events which are measurable
for the future of P. Thus, H, (P|T~'P") represents the extra average information given by P if we
know its future.

Observe that

1. h,(T;P) <H,(P) < o0.

2. If T is an automorphism, then %,(7;P) = H, (TP|PT).
3. It holds

H, (PT|T'P*) =H, (PVT'PHT'PT) =H, (PIT'PT) = h,(T;P).

Definition 8.3.2. We say that P is decreasing (with respect to T) if P > T 'P.
For example, for any partition P, P™ is decreasing. If P is decreasing then we can compute the
entropy simply as

h(T;P) =H, (P|T~'P) (P decreasing).

Hu (P")

Lemma 8.3.1. h,(T;P) = lim,_,«
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136 Metric Entropy of a Transformation 8.3

Proof. We compute

n—1

H, (P") =H, (P vV T‘kP) =H, (P| Vi ' T7*P) +H, (T v§ 2 T~*p)
1

=H, (P| VI~ T7"P) + H, (V{°T"P)
by eq. (8.19)

=H, (P| VI ' T7"P) + (H, (P| V{2 T*P) +H, (Vi *T"P))
n—1 n—1

o= H, (P| Vi TFP) +H, (P) =) H, (P| Vi T*P) +H, (P) n — steps

i=1 i=1

By Doob’s increasing Martingale theorem, H, (P| Vi T~*P) — H, (P|T~'P"), hence its Cesaro
=00

average converges to the same limit as well. This concludes the proof. [
It is possible to extend the above lemma as follows.
Proposition 8.3.2. Suppose that Q < P and H, (P|T'Q") < +oc. Then

n —nA+
(T3 P) — lim P70

n n

Proof. As an exercise (arguing as in the previous lemma) the reader can check that

n—1
H, (P"77"Q%) = H, (PIT'Q" VP).

1=0

Since Q* v P* A/ P*, using H, (P|T'Q") < 400 we deduce the claim as consequence of the
increasing Martingale theorem. [

A similar formula holds for the weaker partition.
Proposition 8.3.3. Suppose that Q < P and H, (P|T'Q") < +oc. Then

n|m—np+
(T3 Q) = lim S (@TPD)

n n

Proof. We start noting that

n|p—np+ n|m—nn+
a, = HH(Q ’T P )SHH(Q |T Q >:hu(T,Q)

n n

Fix e > 0. By the addition formula for conditional entropies,

H, (P*|T—"P*) — H, (P*|T P+ Vv Q" H, (P*|T—"PT v Q"
0, = B TP B, PUTTREVEY) gy B (PUIT TPV
n n
H Pann+ n
> py(rep) - B EI IOV

n
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We deduce by the previous proposition that for n sufficiently large it holds
H, (P"|T"Q")

h,(T;P) > ¢
hence for those n’s
oo BP0 B ETT@IVEY) | R@ITTEY
n n n
From here follows. [ |

Properties of h,(T’; P).
HT-1 0 < m < m' < +00,P € E = h,(T;P) = h,(T; /" T*P).

Proof. Since Q := V' T~ Fp =T \/6”/_’” T—*P, we obtain using (8.19)

1 n—1 1 n+m/—m—1 n4m —m 1 n+m/—m—1
—H T7*q| = -H T | = — H T .
e R R e e

Taking limit as n — oo we conclude the claim. [

HT-2 P,Q € F,Q < P = h,(T;Q) < h,(T;P).
This is clear.
HT-3 If P,Q € & then
b (TP) = h,(T50) < H, (P|Q)

Proof. On the one hand,

n—1 n—1
H, (P") <H, (\/ T*pv\/ TkQ> =H, (Vi 'T7*Q) + 8, (Vi 'T7*p| v~ ' T7*Q),
0 0

and on the other

—
I
—

H, (Vi 'T"Plvg ' T7FQ) <Y H,(T'P| vy ' T7%Q) <) H, (T'P|T'Q) = nH, (PQ),

%

n

I
o
Il
=)

7
therefore

1 1
EHM (Pn) - EH/L (vgilTikQ) < Hu (P‘Q) .

HT-4 If P,Q € Z then
h,(T;PV Q) < h,(T;P) + h,(T;Q).

Proof. We have

h(T;PVQ)=H, (PVQT'P"vT Q") =H, (PIT'PTvT'Q") +H, (QPT VT Q")
<H, (PIT"'P") +H, (QIT'Q") = h,(T;P) + h,(T;Q).
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HT-5 Given € > 0 there exists § > 0 such that

PeZ,H,(P)—h,(T;P) < 6= (T"'P), ise— independent.

Proof. By proposition 8.1.3 given ¢ > 0 there exists 6 > 0 such that H, (P) — H, (P|Q) < ¢ implies
P 1€ Q. Thus for every n > 0,

h.(T;P) <H, (P| Vi~'T~"P) <H, (P)
= ifH, (P) — h,(T;P) < § = H, (P) —H, (P| Vi " T7*P) < §
=P L°VI'T™P ¥Yn>1= (T"'P), ise— independent.

Definition 8.3.3. The (metric) entropy of the map T is

h,(T) = sup h,(T; P)

PeZ

Remark 8.3.2. Consider P = (P;); € E. Given € > ( there exists n. such that

oo

> —u(P)log u(P) < e.

1=Ne

Consider P¢ := {Py,..., P, U2, P;}. Then P¢ is a finite partition and

Ne —1, 1=MNe

o0

h(T3P) — hy (T, P9) < H, (P[P) = > " —u(P,) log u(P,) < e.

1=Ne

If follows

h,(T) = sup h,(T;P)

P finite

Properties of the metric entropy

ET-1 If m € Nthen h,(T*) = m-h,(T). Moreover, if ' is an automorphism then h,(T") = h,(T1),
and thus h,(T*) = |m| - h,(T) for all m € Z.

Proof. Note first that h,,(Id) = 0, for if P is any partition then P* = o,,, .., (P) and thus h,(Id,P) =
0 for every P € &. Now fix m > 1 and take P € . Then

H, (V" Tkp
hu(T™;P) < h,(T™, V3~ 'T7"P) = lim x (Vo )

n—00 n

therefore
a) h,(T™;P) <m-h,(T;P)= h,(T™) <m-h,(T).

b) h,(T™; vy 'T*P) = m - h,(T;P) = h,(T™) > m - h,(T).
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Assuming that 7" is an automorphism,

H, (Vi T*P) H, (T-"\/} T"P)

T T
H, (V] T*P
= lim M = h,(T';TP)
n—00 n
and from here follows %, (T") = h,(T~'). The rest is clear. |

ET-2 Suppose that S : (N, %y, v) © is a factor of 7', i.e. there exists H : (M, By, 1) — (N, BN, V)
surjective such that H o T' = S o H. Then h,(T) > h,(S). In particular if 7" and S are
conjugate (h is an isomorphism) then %,(7") = h,(5): metric entropy is an isomorphism
invariant.

Proof. Let P be a finite (or finite entropy) partition of N for v. Then H~!P is a finite partition of
M for ;i and

n—1 n—1 n—1
H, (\/ T‘kH_1P> =H, (H‘l \/ S‘kP) =H, (\/ S‘kP>
0 0 0
which implies h,(T; H 'P) = h,(S;P). From here follows. |

So far we haven’t given any example on how to compute the metric entropy of a transfor-
mation. In pursuit of this let us start giving some Propositions that will help us to calculate the
entropy.

Proposition 8.3.4. Let (P¥),>o be a sequence of finite entropy partitions so that P By as
k +— oo. Then

h(T) = lim h,(T;P").

k—o0

Proof. Let Q € £. By HT-3, for every k we have

ha(T;Q) < h,(T,P*) +H, (QIP*) < sup{h,(T;P") +H, (Q[P")} = Jim. (T P).
k =00

Theorem 8.3.5 (Kolmogorov-Sinai).
1. If P is a generator of T then h,(T') = h,(T’;P).

2. If T automorphism and P is a generator of T' (either strong or not) then h,(T") = h,(T;P).

Proof. Both parts are proven in the same way: let us prove 2). Take P generator; then \/" T*P /
%PBn as n — oo, thus by the previous Proposition and HT-1,

N oo

hu(T) = lim h, (T;\?T’“P) = h,(T;P).
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Kolmogorov-Sinai Theorem is a fundamental piece in the theory. The whole of concept of
entropy would be of little practical use without this theorem. In view of this, I will use the
theorem freely, most of the time without any direct reference to it.

Example 8.3.1. All rotations have zero entropy. Consider the rotation R, : T “O of angle « and let
A be the Lebesgue measure.

Ifa=" € Qthen RY = Id, hence 0 = h\(R%) = q- hx(Ra). On the other hand, if o is irrational
we claim that P = {[0,1/2],[1/2, 1]} is a strong generator.

Since R,' = R, _,, it is no loss of generality to consider future iterates of P. Note that
R!(P) = {[na,na + 1/2], [na + 1/2,nal} is determined by the points R(0), R!(1/2). For every
n, dr(R*(0), R*(1/2)) = 1/2 and by irrationality of « the set { RE(0), RE(1/2)}}—, consists of 2n
points. With these facts one establishes easily that \/g_1 REP consists of 2n intervals. Moreover, given
x < y € T there exists some n > 0 so that v < R}(0) < y, and this implies that z,y are in different
atoms of \/j " REP. Hence \/{° RP is the partition of points mod 0, i.e. P is a strong generator:

We conclude

Hy (Vg ' REP
ha(Ry) = hy(Ry;P) = lim A (Vo FieP) < lim

n—»00 n n—»00 n

log 2
og n:O‘

Remark 8.3.3. Observe that in the previous proof we could have also deduced that h)(R,) = 0 by
noting that T'(P~) is also the partition into points (hence h,(R,) = Hy (P|T'PT) = (). With a little
bit of more thought, the argument can be generalized to the following.

Proposition 8.3.6. Suppose that T': (M, By, 1) — (M, B, i) is an automorphism that admits
an strong generator of finite entropy. Then h,(T) = 0.

Proof. Let P € F be a generator. Then by (8.19),

h,(T) =H, (P|T~'P*) =H, (TP[P*) = 0.

Remark 8.3.4. It is possible to define a conditional version of the entropy. If i C By is a sub
o -algebra and P € Z, one writes

1
h,(T;P|d) := lim EHM (P*|dd) hy (T|dA) = sup h,(T;P|d).
n PeZ

In this setting, we have the following result, known as eht Abrahamov-Rohklin formula .

Proposition 8.3.7. Let T': (M, By, 1) O be an automorphism and S : (X, Bx, pux) O a factor of
T, with semi-conjugacy H. Denote i = H'%Bx: then

hu(T) = i (5) + hyu(T]A)
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8.3.1 Entropy of Shifts and Subshifts

We’ll now present Kolmogorov’s reason for introducing the concept of entropy. Consider o :O
Ber(pi,--- ,paq) the Bernoulli shift of weights py,--- ,p;and let P = {[i] : 1...,d} the partition in
the rectangles obtained by fixing the 0-coordinate. Clearly

d
H, (P) = — Y pilog(p:), (8.20)
=1

and P is a generator for o; observe that P and 7~!(P") are independent, therefore by P-4

hu(0) = hy(o;P) = H, (PIT(PY)) = H, (P) =H, (P) = — Zpi log(p:)-

Theorem 8.3.8 (Kolmogorov). There exists uncountably many non-isomorphic Bernoulli shifts. In
particular Ber(1/2,1/2) and Ber(1/3,1/3,1/3) are not isomorphic.

Proof. Since the metric entropy is an isomorphism invariant, it suffices to note that for fixed d
the map

d d
Ui A={(p1,-pa) : Zpi =1,p; >0} = Rsog Y(p1, - ,pa) = _Zpilog(pi>
i=1

=1
is continuous, thus its image contains an interval (and therefore is uncountable). The last part is
immediate. [ |

That the converse of the previous theorem holds is one of the biggest achievements in Ergodic
Theory of the X X century.

Theorem 8.3.9 (Ornstein). The Bernoulli shifts are isomorphic if and only if they have the same
entropy.
See [28] for a discussion.

Now we’ll consider the case of SFT. For this it will be convenient to introduce a general
construction that is useful for studying shift spaces over finite (or countable) alphabets. Let us fix
(2= SN Bq,P),S ={1,--- ,d} and recall that for £ > 0 we are writing Q; = S**1. For P-a.e.w
there exists

Pla|o'w) =P(a| X, =wn,n>1):=P([a] | 07 'Bq) (w),

and since #) < oo, for P-a.c.w we have a distribution a — P(a|o~'w) on Q. Indeed,

d
1=Ep(l|0'Ba) =Ep(D _ Liglo"Ba)

a=1

and the claim follows. Observe that by Doob’s increasing Martingale Theorem we have for almost
every w,

[a, w1 - --wnl)

(lwrs -~ wn])

P(a| o w) = limP(a | B3)(w) = lim P([a] N o Lw; - - whta])

lim
= lim
n Plo=Hwy, -+ wpt1)) n P
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Similarly, for £ > 0 and P-a.c.w € €2 we can define a distribution on 2, by
P(ag, ...ar |0 " w) =Plag. .., ax | Xp = wn,n > k+ 1) :=P(lag, -+ ,ax] | 0" %Bq)(w)

Note that for some ' “€ (), if w € Q' then P(- | 0 7*~'w) is well defined for every k > 0.
Definition 8.3.4. The {P(-| o 7*"'w) : k > 0,w € '} are the pointwise distributions of P.

Using the expression as a limit we easily deduce the following:
Proposition 8.3.10. For [,k > 0 it holds
Plag---agi| o™ (kD) w) =Plag---ay | J_(k+1)ak+1 o aqw) - Plaggr - ag | U_U)W)

As a consequence of Kolmogorov-Sinai theorem we obtain that if P is a generator of o : (2 O,
then

=> - /1ogIP>aya Lw) dP(w) (8.21)

a€sS

We’ll now apply the previous formula to the case of the Markov measure

P = PV(GO tee an) = VaOP<i0, Zl) s P(in—lyin)-

By direct computation, P(a|o~'w) = 2= P(a,w;), thus
w1

hp( Z / log v, — log v, + log P(a,w;) dP(w Z/ log P(a,w;) dP(w)

aesS aes
by invariance of P

Y% / |, loe P@.0)dP() = = 37 voP(a.b)log Pla. )

acS bes a,besS

Example 8.3.2. Consider the linear automorphism of T? given by A € S14(7Z). One can show that

hren(A) = Z log™ |Al.

A€sp(A)

It is a result due to Katnelson that if A acts ergodically (i.e. A is partially hyperbolic) then the
entropy is a complete invariant for these system: A, B € S1,4(Z) induce isomorphic transformations
in T if and only if they have the same entropy.

The proof relies on Ornstein result theorem 8.3.9, and requires an additional amount of very
non-trivial work.

8.3.2 Entropy and convex combinations of measures

Suppose that v € P#¢ (M) is another invariant measure besides p; since P+ (M) is a convex set,
it makes sense to consider whether the behaviour of the entropy on convex combinations. Recall
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that the function ¢ : A = {x € R": Y . x; = 1,2, > 0} defined as ¢(xy,--- ,z,) = — > x;logz; is
concave, therefore by example 8.1.1 it holds that VO < A < 1,Vp,q € A,

Y =i+ (1= N)g) log(Ap; + (1= Na) = o + (1= X)) = Ad(p) + (1 = N)e(q)

= AZ —p;logp; + (1 — ) Z qilog g;.

On the other hand,

> =i+ (1= Nai) log(Ap; + (1 = N)gi) + Apilog p; + (1 — Mg log g

)

= Z —Ap; (log(Ap; + (1 = A)gi) — log Api) — (1 — A)g; (log(Api + (1 — A)g;) — log Ag;)

+ > Api(logp; — log Api) + (1 = A)g;(log ¢; — log A(1 — N)g)

and since the first two terms are negative,
< —Alog A — (1 —A)log(l — ) <log2.

We deduce that
>\ Z —Di IOg pz Z qi IOg qi < Z )‘pz )qz) log(Apz ( )‘)QZ)

< )\Z —pilogp; + (1 — A) Z% log ¢; + log 2.

Let P be a finite measurable partition (n = #P) for A+ (1 — \)v; since pu, v << Au+ (1 — A\)v
it follows that P is also a measurable partition for u, v, and by the previous computation we
deduce,

Pt - (T3 P) = A (T5P) 4+ (1 = A)h, (T P). (8.22)
Proposition 8.3.11. For fixed T, the function h : P+ (M) — R is affine.

Proof. By taking supremums in the equaliy above we get
haur = (T) < Ay(T) + (1 = A)ho (T).

For the other inequality note that if either h,(T) or h,(7") are infinite, then by eq. (8.22) it follows
that hy,4(1-x) (1) = oo as well, so we can assume that h,(7"), h,(T") < oo. Fix e > 0 and choose P
finite partition for 4, Q finite partition for v such that h,(T) < h,(T;P) + §, h,(T) < h,(T5Q) + 5.
Take any Ap+(1—\)v-measurable partition R that is finer to P, , Q and note that again by eq. (8.22)
we get

haut=aw(T) Z Py a-xp (T, R) = Ay (T3 R) + (1
(1

: — \)h, (T;R)
> M (T;P) 4+ A(1 = Ay (T Q) > Ay (T) + o(

T) —e.

Since ¢ is arbitrary, we conclude the proof of the proposition. [

—Ah
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If the map h were also continuous, we could use theorem 3.4.3 to write h,(7) using the
ergodic decomposition of p. Regrettably, this is usually not the case-

3—1

Example 8.3.3. Consider T : T © the doubling map T'(x) = 2z mod 1. Then p,, = 3= 4] k€

P+¢(T), hy, (T) = 0 for every n, but p,, —— Leb and hye,(T') = log 2.
n—oo

Even though the map & is not continuous, the following theorem is true.

Theorem 8.3.12. Consider an ergodic decomposition of 1 € Pvr(M) as given in corollary 3.4.6,
ﬁ@mT n Q(dn). Then,

o (T) = / D).

Maps of completely postive entropy

We finish our discussion of entropy of maps by stating an important theorem (cf. [20] for the
proof). For the rest of this part, 7" : (M, By, 1) O is a fixed automorphism.

Definition 8.3.5. The Pinkser o -algebra of T is
Pin(T) ={A e By : h,(T;{A, A°}) =0}.
Let us observe the following.

Lemma 8.3.13. Pin(T) is a o -algebra.

Proof. Clearly M € Pin(T) and A € Pin(T) < A° € Pin(T). Let us first show that Pin (1)
is a Boolean algebra: if A, B € Pin(T) consider P = {A, A°},Q = {B, B}, thenR = {AUB, A°N
B¢} <PV Qand by HT-4,

h,(T;R) < h,(T;P) + h,(T;Q) = 0= AU B € Pin(T).

It suffices to show that Pin (T) is closed under increasing countable disjoint unions, so we take
{A,}, with A, C A,y € Pin(T), and let A =, A,. By HT-3,

hu(T:{A, A}) < (T3 {A, A}) + H,({A, AH{An, A7}V
Taking limit, we get h,(T;{A, A°}) =0and A € Pin(T) |

It follows also that Pin (T) is completely invariant, and clearly is the largest o -algebra where
T has zero entropy in the sense that if P € &,

h,(T;R) =0=P C Pin(T).

Definition 8.3.6. T is said to have completly positive entropy if any non-trivial factor of it has
positive entropy, that is, if Pin(T) = Ny_a-

Example 8.3.4. If T is a Kolmogorov automorphism, then it has completely positve entropy. Indeed,
if P € F then
0= h,(T,P) = H,(P| vie, T™"P)

implies that P is V2, T*P measurable, and this leads to P C Ta it = N, _4.
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That the reciprocal also holds is a theorem.

Theorem 8.3.14 (Rohklin-Sinai). Let T' : (M, %3y, u) O be an automorphism. Then T is a
K -automorphisms if and only if it has completely positive entropy.

8.4 The Shanon-Breiman-McMillan Theorem

The following is sometimes called “The fundamental theorem of information theory”. It is probably
important.

Theorem 8.4.1 (Shanon-Breiman-McMillan). Let P € Z and f := I, (P|T'PT). Then
1 e .
~I (Vi 'T*p) —— B,(f|Jr) p-ae andin A

In particular if the system (T, p1) is ergodic then

1 ,
EI“ (Vg T *p) — h,(T;P) p-a.e. andin L.

Before proving the theorem, let us try to understand what it means. Assume that p €
€rg,(M); by the S-B-M we have

1
—log u(P"(x)) — h,(T;P) p-a.e. andin L'
n

n—o0o

Since a.e. convergence implies convergence in measure, we deduce that for every ¢ > 0

1 ([P (T P) + log p(Fr(2))| <€) —— 1

n—o0

i.e.

p({x : exp(—n(h,(T;P) + €)) < p(Pu(x)) < exp(—n(h,(T;P) —€))}) — 1

Thus, if n is sufficiently large there exists E” C P,, such that
* u(E") <e.
e P,eP"\E"= u(P) € [exp(—n(h,(T;P) +€)), exp(—n(h,(T;P) —€))].

Consider now (£2, %Bq, uq) the natural representation of the process (7', P): by S-B-M the words
w =1, ...,i,—1 of size n have approximately the same probability ~ exp(—n - h,(T;P)). This tells
us that if we want to efficiently code messages with words of size n with our process, we need to
codify exp(n - h,(TP)) messages if we ignore words that appear with low probability. Now lets
work in the proof.

Lemma 8.4.2. Let (h,), C £'(u) be a sequence of positive functions converging both - a.c. and in
2! to zero as n goes to infinity.. If sup,,~q h, € L' (1), then

n—1
1 .
- g hn1_goTF —— 0 p-ae. andin L.
n — n—00
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Proof. By hypotheses and the DCT, [ h,, du —— 0, thus
n—oo

n—1 n—1
1 1
/-E :hn_l_koT’“du:—E /hkdu%o.
nk:o nk:o e

To establish almost everywhere convergence, define h,, := sup,,, hx. Then (h,,) is a decreasing
sequence of positive measurable functions converging almost everywhere to zero, which is
dominated by the integrable function hy = sup; i, thus it converges in £' to zero as well. For

p < n we compute

1 n—1 1 n—1—p 1 n—1
k __ k k
Ezhn_l_kOT _ﬁ Z hn—l—kOT +E Z hn—l—kOT

k=0 k=0 k=n—p
1 n—1—p 1 n—1

<= hpoTF4— Y heoT"

n n

k=0 k=n—p

hence by the Ergodic Theorem, for every p it holds

n—1

1 ~
lim sup — Z hy 1 roTF < E, (hp|Tr) p-ae.

n
=00 =0

and since h, — 0, it follows
P00

n—1

1
lim sup — Z hp 1 o T" - a.e.

n
00 =0

as we wanted to show.

We are ready to conclude the proof of the S-B-M theorem.

Proof of theorem 8.4.1. Observe that by Chung’s Lemma 8.2.2 the function f = lim,, ,, I, (P[P")

is in #!. Now we compute
I, (ViZeT™"P) =1, (P|V}Z T7"P) + 1, (T Vi3 T *P)
I, (P|ViZ  T7"P) + 1, (V3T "P) o T
L, (P Vi T7"P) + (1, (P| Vi T7"P) + 1, (ViZ3T *P) o T) o T

3
—

I, (PIViZ " T *P) o T" + 1, (P)oT™

[e=]

=l

which implies

n—1
1 el 1 n—1—i rm— i
|51u (VizoT*P) = E,u(f|Jr)| < lﬁ (I, (PI Vi1 T7FP) — f) o T']
=0
n—1
1 . I,(P)oT™
- T —E o
+|n;fo W(F1Tr) + ==
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By the ET it suffices to show that the first term converges -a.c. and in &' to zero. Define
hi := |1, (P| Vi_, T*P) — f|: (R;); is a sequence of positive measurable functions that converges
- a.e. to the zero function, and since h; < 2f it also converges in &!. Notice also

n-l n—1
1 . . 1 '
L EE ) e < L S e
An application of the previous lemma finishes the proof. n
Exercises

1. Complete the proof of proposition 8.3.3.

2. Show thatif T": (M, By, 1) ©O has discrete spectrum, then £,(7") = 0.
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CHAPTER 9

Lebesgue Spaces and Countably generated s-algebras

So far we have been discussing (mainly) countable partitions. As the reader can perceive, this
imposes some serious restrictions, as it leaves “simple” partitions out of consideration. For
example, the partition {{x}}.cy seems tame enough, although is not covered by our methods in
virtually all cases of interest (when M is not countable mod 0). In this chapter we’ll remedy this.

Standing hypotheses for this Chapter: (), %), 11) is a fixed probability space.

We already mentioned in Section 7.3 that, given A C %) sub o -algebra, it is not always true
that there exists a partition P4 such that P4 = A.

Example 9.0.1. Let M = [0, 1] equipped with its Lebesgue measure \. If P is a partition then P < ¢,
where

e = {{z} }aep)
In particular P C . However, it is easy to check that
£ ={A € By : Aor A° are countable.} C By

We will postpone the study of partitions for a while, and try to understand first o -algebras.

9.1 Standard spaces and o-algebras

It turns out that for the applications not all probability spaces are relevant.

Definition 9.1.1. We say that the measure space (M, 9By ) is an standard space if M is a locally
compact separable metric space and By is its Borel o-algebra. We say that (M, By, i) is an standard
measure space if (M, %y ) is an standard space and v is a regular (locally finite) measure on By.

The strongest condition above is local compactness. Now if (M, %y, 1) is an standard
probability space we can consider its Alexandroff compactification M., = M U {oco}, which is a
compact Haussdorf (hence normal) space.

Lemma 9.1.1. If M is a locally compact separable metric space, then it is o-compact.

Proof. Consider a countable basis U = {U,,},, of open sets with compact closure. Define K, := Uy:
by compactness and the fact that U is a basis, there exists ny such that K7 C U2,U;. Then
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K, :=U2,U; is compact and K3 D K. Proceeding inductively we get an increasing sequence of
compact sets { ;};>; which furthermore

szon D) UnUn =X.
|

We conclude that M, has a countable basis of open sets, and thus by Urysohm’s metrization
theorem it is metrizable. Observe that By = {A, AU {0} : A € B}, and that we can extend
uniquely p to 9By by declaring p({oc}) = 0.

Convention. Unless otherwise specified, we’ll assume in the definition of standard (measure)
space that M is compact. For the rest of the section (M, 3By, 1) denotes a fixed standard measure
space.

Definition 9.1.2. For C C 9By sub- o -algebra, x € C we denote C(z) the atom of C containing z,
namely

Clx)=({C:CecCazeC)

In principle, there is no reason why C(x) has to be measurable for general C; this is the case
however if C is countably generated, that is C = 0,,,,...(C,, : n € N).

Remark 9.1.1. If C = 0, 4en.(Cy, : n € N) we can assume that the family {C,,}>2, is symmetric,
that is C,,, € {C,,}>2, if and only if C¢, € {C,,}22,. We will assume from now on that (countable)
generators are symmetric.

Lemma 9.1.2. IfC = 0., 4e..(Cy, : 1 > 0) is countably generated, then

C(:IZ‘) = m Cna

IGCn

and in particular C(x) € C C By.

Proof. Let Cy = {C,,}22,. One has C(z) = RN S where

R:ﬂCn, S = ﬂ A.

2€Ch x€A;AZCo

Assume that C(z) # R. Then S\ R # (), hence there exists n, such that x € C,,, S\ C,, # (). This
implies,

VAZCo,x € A= ANCy #0.
Since R # C(x), necessarily exists B € C\ Cy such that x € B, BNC,,, € Cy. Butthen x € BN,
and thus B N C,, N Cy,, # 0, which is a contradiction. [

Example 9.1.1.

1) R is countably generated. Consider a dense subset (x,,),>1 C M and define B = {B(z,,,7,)
rm € Q}. Then B is countable and o, ., (B) = B
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2) The o -algebra ¢ of example 9.0.1 is not countably generated. Arguing by contradiction, assume

€ = Ouggen.(Cr : m > 0). Either C,, or C¢ is countable, thus it is no loss of generality to assume

that C,, is countable for every n. Defining C' = U,>oC,,, one sees immediately that
E=o{{z}:2z€C}

But then if y ¢ C,

ély) = [z} =C° # {y},

zeC

which is contradiction.
3) Suppose that T : (M, %y, 11) O is an ergodic map; then its invariant o -algebra J = {A €
B+ A =, T1 A} coincides with the trivial one.

We claim that if 1 doesn’t have atoms, then J is not countably generated. By contradiction,
assume J = o({C,}5°,). Consider Cy = {C,, : m(C,,) = 1}: clearly Cyy # (. Define

ﬂ(] = u(A) =1.

CneCo

If x € A we obtain C(z) = A. But C(z) coincides with the orbit of x modulo zero, and since
doesn’t have any atoms necessarily ;1(C(x)) = 0, which is a contradiction.

Remark 9.1.2. Given C = 0,,,..,.(C,, : n > 0), consider a sequence (P,),, of finite partitions such
that V,,>oP, = C (lemma 8.2.4). Observe in particular that

Ve € M, Py(x) \(C(z).

Let us go back to the case %,;. As we saw, %), is countably generated: taking {B,}, as the
sets of balls centered on a dense set with rational radii, we easily show that

Hmm...that’s interesting. The set of atoms of 9%, is precisely ¢, but on the other hand we know
that the smallest o -algebra containing ¢ is not %);. The key point to elucidate this are (as usual)
null sets.

As was previously mentioned, the space %), becomes a pseudo-metric space when equipped
with p(A, B) = u(AAB). Of course, if B’ D %), is a o-algebra where p is defined (for example,
the set of u-measurable sets) then we can extend the distance to 5’. Modulo the equivalence
relation

A~ B p(A B) =0,

the quotient space B, ., := B’/ ~ becomes a metric space with the induced metric on the classes.

mod

Remark 9.1.3.

1. B'is complete as o-algebra if and only if (Bl .40, ) I a complete metric space.
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Proof. Note that p(A, B) = [ |14—1p|dp. If (A,),>1 is Cauchy in (Bl 0, p), then {14, },>1
is Cauchy in £'(B’, 1), hence by the Riesz-Fischer theorem it converges to some [f] €
Z1(B', 1). Convergence in £! guarantees converges a.c. for some subsequence, and with
this it is not hard to see that [f] = [14] where A = {z : fz > 0}. Since B’ is complete,
A € B'. The converse is similar. [

2. C C By countably generated implies (Cioao, p) is separable.

Proof. Since C is countably generated there exists a countable algebra A so that C =
Tatg.gen.(A). Now given C' € C, € > 0 there exists C, € A such that

WCAC,) = p(C,Ce) <€

this is a basic approximation theorem. In other words, A,.q0 C Cumodo is dense, hence
(C)moao is separable. [ |

Let &\ be the completion of %,; with respect to p, i.e.
v = {AUN A€ %M,N /L—Illlll}.
In general, if A is a sub o -algebra of &); we denote by ¢(.A) its completion.

Lemma 9.1.3. Suppose that A C % is a sub-o-algebra satisfying
* Ais a complete.
* (A, p) is separable.

Then there exists A countably generated sub-o-algebra of %, such that A = c(g).

Proof. By separability and the fact that .4 is complete, we can find a countable algebra A’ C A
so that A’ is p-dense. Now each element of A’ can be written as A = B U N where B € By and
N is p-null. From this we can easily extract a countable generated o -algebra A C A N By with
the property that A,,,q0 is p-dense. Its completion ¢(.A) is also p-dense and its contained in A.
But this implies by the first remark that

-~

C(.A)mod 0o C A

-~

is complete, hence closed. Therefore ¢(A) = A. ]

Theorem 9.1.4. Let C C %y be a o -algebra, where M is a standard space. Then there exists A C C
countably generated such that A =, C.

Proof. Since %) is countably generated, the metric space £*(%y) is separable, and thus so are
its subspaces. In particular, the subset

{[La]: Aec}

is separable with respect to the ||-||,: norm. Considering ¢(C) and applying the previous lemma,
we deduce the existence of a countably generated o -algebra A C ¢(C) (cf. the proof of the
Lemma) such that ¢(.A) = ¢(C). From this follows. |
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Corollary 9.1.5. If A C Py is a complete o-algebra, then it is countably generated mod 0.

Proof. Arguing as before, £ (%) is separable and hence ¥!(A) is separable as well. From this
we can extract 4, C A A countably generated such that ¢(Ay) = ¢(A) = A. |

Corollary 9.1.6. If A C £\ o-algebra, there exists an increasing sequence of partitions (P,), such
that A=, V,,P,.

Now we discuss some other properties of Standard Spaces. The first is a theorem of Kura-
towsky that says that essentially there is one Standard Space.

Lemma 9.1.7. Let M be a separable metric space. Then there exists an embedding ¢ : M — [0, 1]™.
In particular M has at most the cardinality of the continuum.

Theorem 9.1.8 (Kuratowski). If (M, %By) is a complete separable metric space (a Polish space)
then there exists an bi-measurable isomorphism ¢ : (M, By) — (N, Bn) where N is either

1. [0,1]
2. 7
3. {1,---,d} for some d finite.

It follows in particular that any two standard spaces of the same cardinality are isomorphic as
measurable spaces.

Remark 9.1.4. Our definition of standard space is actually what in the literature is called a Borel
space. In view of the Theorem above, this is not that terrible if we are are only interested in their
properties as measure spaces.

Corollary 9.1.9. Let (M, %\, 1) be an standard probability space where y is continuous (w/0
atoms). Then there exist an isomorphism h : (M, By, i) — ([0, 1], Byo 17, Leb).

Proof. By Kuratowski’s theorem we can assume that (M, By, 1) = ([0, 1], Bo,1), Leb). Define
h(z) := m([0,z]): since u doesn’t have atoms h is strictly increasing, and moreover h(0) =
0,h(1) = 1. Hence h is an homeomorphism of [0, 1] (in particular bi-measurable). Finally,

x <y = Leb([hz, hy]) = h(y) — h(z) = p((z,y]) = p([z, y]) = h.p = Leb.

9.2 Disintegration of measures

The following is one the most important pieces of the theory for Standard Probability Spaces.

Theorem 9.2.1. Let (M, By, p) be a (locally compact) standard probability space and A C By
a countably generated sub o -algebra. Then there exists My € A of full measure and a family of
probabilities {11} zen, € Pv(M) such that:
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1. For every f € £ (By;) the function f : My — C, f(x) = [ f du?(x) is a measurable version
of E,(f|A). In particular, for every A € By,

H(A) = / HA(A) du(o).

2. The map ¢ : My — P+ (M) defined as ¢(x) = p* is measurable (here P+ (M) is considered
equipped with its w* topology).

3. 1€ My= pu(A(x)) = 1.

Definition 9.2.1. A family {u*}.cn, satisfying 1 and 2 of the previous Theorem is said to be a
disintegration of the measure p relative to A. If A is of the form A = £ where £ is a partition we
simply say that is a disintegration relative to &.

Remark 9.2.1. The family {u*}.en, is essentially unique; namely, if {v,}.cn, is another family of
probabilities on M, with m(M,) = 1 and satisfying 1 of the previous theorem then clearly v, = p:! for
p-a.e.(x). There is a small subtlety in this which comes from the fact that conditional expectations
are not functions, but rather classes of functions in £*. To establish this uniqueness, consider a dense
countable set (f,,)n,>0 C C(M). By hypotheses, for each n there exists versions gy, h,, of E,(f,|-A)
such that

x € My = gu(z /fndux, x € My = hy( /fndz/x

On the other hand g,, = h,, for ji- a.e.(x), hence there exists S,, C My N M, of full measure, such that

xGSné/fndyf:/fndyx.

It follows that for every x € S := N> S, both linear functionals p*, v, coincide on a dense set of
continuous functions, hence comczde evetijhere Finally note that S C My N M is of full measure.

Proof. Observe first that if A is the o -algebra generated by a finite partition P = {P;,--- , P;}
then setting Mo(P) = M \ U,; i N P; we get that the family {u; := p (-|A(2)) tzen, verifies 1
and 2 of theorem 9.2.1.

In general, consider (P,),>o an increasing sequence of finite partitions such that A =\/>~ | P
Let M, :=(),>o Mo(P,,), and observe that for every x € M, and for every n > 0 there exists a
well defined measure

pa" = p(-[Pn(2)).

By the increasing Martingale theorem we know that if f € £'(%By) there exists Sy =, M
such that

(+) = €My = E,(flA)@) = lim E,(f[P,)(x)

both y-a.e. and in £*. Take G = {gi}ren C C(M) dense and define S; := (), S,,. Finally let
M, := M, N Sy; observe that M, € A.

Claim: for x € M, and f € C(M) there exists lim,, [ fdu2".
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Indeed, {u:» : C(M) — C},>0 is an equi-continuous family between metric spaces that
converges on a pointwise on a dense set, thus converges everywhere by completeness of C.

For x € M, define u2' : C(M) — C by
Fe e = ()= tim [ 7t

Clearly 7 is linear, positive and p7}(1) = 1, thus by the Riesz-Markov representation theorem it
defines a probability measure on M.
Now given f € £!(%y) we have by (x) that for p-a.e.(x) € M,

(1A w) =t [ fagtr = [
Let us define f : My — C by f(z) = [ fdu.

1. fis A measurable, being the pointwise limit of .A measurable functions.

2. By (%),

E,(fA4)(0) = lim B, (fp,)(0) = lim [ fau = [ faud p-a.e(o) € My = (o)

By the above, f is a measurable version of E,(f|.A). Observe that for 2 € M, it holds P, (z) \,
A(x), so if we fix k we have for n > k

e (Pr(z)) = 1
and thus

pA(P(2)) =1 . p(Al2) = 1.

This finishes the first part.
To check measurability of ¢ : © — p! we fix f € C(M) and consider ev; : P#(M) — C the
evaluation map on f. Then

My > x—qiu;f‘ € Pr(M)
b N le"f
f s
Jf .

The w* topology in P (M) is relative topology of %#(M) C [];cq(x)[0, 1] induced by the
product topology. Hence, if B C [0, 1] is closed then gb*l(ev;lB) = f~(A) is a Borel set in M for

every f € C(M). Since {ev;l(B) . feC(X),B C0,1] closed} generates the Borel o-algebra of
P (M), we conclude that ¢ is measurable. [

Now we’ll extend theorem 9.2.1 to non-countably generated o -algebras. Start by noting the
following.

Lemma 9.2.2. Suppose that A, A’ C By are sub o -algebras such that A =, A’. Then for every
f € L1 (Bu), Eu(flA) (@) = E,(f1A) (@) for p-a.c.(x).

As a consequence, if A, A’ are countably generated then there exists M, =, M such that u* = p*
for x € M.
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Proof. Define C = AVA'): clearlyC =, A,C =, A'. Therefore, if f € C(M) bothE,(f|A),E,(f|A")
are

* C-measurables, and

 for every C € C there exists A € A, A’ € A’ such that A = C' = A’, hence

[ Entan= [ snnan= [ o= [ fan—= [ [0

We conclude E,(f|A) = E,(f|A’) for pi-a.e.(z).
For the second part we consider a dense set (f,,), C C(M) and argue as for the uniqueness
(cf. remark 9.2.1). [ |

Now we have:

Corollary 9.2.3. Let A C 9B\ be a sub o -algebra, M standard space. Then there exists M, € A
and a family {p2}verr, € Pr(M) such that.

1. If f € £Y(Bw) then for p-a.e.(xr) € My,
B, (1 4)(w) = [ Fau

Therefore, if A € By,

p() = [ ) du(o)
2. The function x — ' is measurable on M.

Proof. Consider C countably generated such that A =, C, A C C (theorem 9.1.4) and let
{1} e, be a disintegration ;1 with respect to C; then My = M, U N where M, € A, u(N) = 0.
Define for z € My, puz' := pS: by lemma 9.2.2, for every f € £'(%y) there exists S; =, M such
that

E(f14)(@) = Eu(fIC)(@) = [ fdi o€ 500y
and this proves the first part. The second is direct from 2 of theorem 9.2.1. [

Fubini property Fix A C %\ (non-necessarily finitely generated) and consider a disintegration
{u} ens, of p relative to A.

Proposition 9.2.4.
If A € By, u(A) = 0 then u(A) = 0 for pi-a.e.(x).
If B € By, n({z € B p(B) = 0}) = 0.
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Proof. For the first part we simply compute
0= () = [ WA b= i) =0 p-ac(o)

As for the second, given B € By consider A := {z € M, : u(B) = 0} and note that by the
second part of corollary 9.2.3 it holds A € 9%,;. Then,

(AN B) = / Ly dp = / u(BJA) () d = / yAB) dji = 0.
[ |

Tower law and conditionals Suppose now that A C C C %) are countably generated and
let {u*}vensys {16} oenr, e disintegrations with respect to A, C respectively. For z € M, e have
A(z) D C(r), and thus we can disintegrate 7' into conditionals with respect to C N A(z). Here
are the details.

It is no loss of generality to assume the existence of finite partitions (P,,),, (Q,), such that

e P,CAP NAQ,CCQ, "C.

* Qu(x) C Py(x) for all z € M,.

o Qn(z) \(C(x), Py(z) \  A(x) for all z € M.

o udn n:—oo> pS and pBn n:—oo> p for every x € M.

Fix N € N and = € My: note that for n > N and p2" - a.e.2 € Py(z) we have Q,,(2) C Py(z),
and furthermore

#(NQn(2)NPy (x))

o HCNQW(2) T upy@) Q0 _ [ PNY\Gn
= o) m@iy Wew@): = ()
u(Pn(x))

Therefore, for z € My, N € N fixed there exists Cy(z) € C such that
* y € My, Pn(z) = Pn(y) = Cn(z) = Cn(y)-
© W (Cn(a) =1
* 2 € Cn(z) = pg = (U5

Define C':= (y>q Uperr, On () we get that C' € C, u(C) = 1 and for p-a.e.(z) € C,

c

1 = (uHC  for pl-ae. z € Ax).

In the case when C partitions each atom of A into countably many sub-atoms we can do
better.

Claim (See [9]). There exists M; =, M, such that for every x € Mj,

He = 1 (| A(@)).
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Indeed, in this case for x € M, write A(x) = |, C(2,) (where the union) is finite or countable)
with A(z) = A(z,) and define ¢(z) := p}(C(x)): we seek to prove that this function is positive
-a.e.. For this consider for ¢, (z) := p(Q,(z)) and note that since A C C, ¢, is C measurable.
As lim,, ¢ (x) = ¢(z)u-a.e.(x), it follows that ¢ is C is measurable as well; in particular N =
¢ 1(0) € C. We then have

_ / o) ds — / AN L) du(e)

PAN) L a@y = D A (N N C(z) Lage).

and

Now fix n: since y € N NC(z,) N M, implies C(z,) = C(y), u;' = pz', we deduce

1 (C(y)) = p(Czn) = 0 = p (N N C(20)) L) = 0.

By the Fubini property of the conditionals, u(N) = 0 and thus pu(C(z)) > 0 for p-a.e.(z).
Consider then for + € M, \ N the conditional measure y, := u7(|C(x)): these are probability
measures and one can check directly that for f € £1(%,,) it holds

E(fIC@) = [ fdne p-aca)

hence by uniqueness, p, = uS for p-a.e.(z).

9.3 Transformations and Conditional Measures

Now we study the action of a transformation on our disintegrated measures. Maintaining the
notation of the previous part, suppose also that 7" : (M, By, 1) ©O is an endomorphism.

Proposition 9.3.1. For ji-a.e.(z) it holds Tpl A = pA.

Proof. This is direct consequence of the fact that for f € £'(By), E,(Tf|T'A) =TE,(f]A). W

We’ll apply these ideas to develop another proof of the Ergodic Decomposition theorem (cf.
corollary 3.4.6), namely we’ll show that given any measure ;1 (on a standard space) it can be
written as

= / fiz dpu()

where p, € €r»g,(M). Consider J = Jr the invariant o -algebra of 7'; it was already shown
(example 9.1.1 3) that often .7 is not countably generated.

Lemma 9.3.2. There exists A C J countably generated such that A€ A= A=T1A.

Proof. Choose Ay = 0,y 4. (A, : n € N) C A countably generated such that A =, Ay, Ay C A:
for every n, A,, =, T-'A,, and by lemma 3.1.1 we can find B,, such that

© B, =, A,
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s T7'B, = B,.
Letting A := 0., 4en. (B : n € N), we see Then A C J and we claim:
1. A=, J.
2. Ae A=T1A= A
Both parts are proven in the same way, so we’ll show only the first. Define
A={AeJ:3Be€ As.t. A=, B}.

It’s easy to see that A’ is o -algebra, and since A, € A’ for every n, Ay = 0.y 4en. (An : 1) C A,
which implies the first assertion. |

It follows then that there exists M; =, M, such that for z € M;,
p' = p” and Ty = pz,

(by the previous Proposition), thus changing M; by (),.,7 "M; we can assume also that
T~'M,; C M,, hence x € T~'M, implies -

Alx) = A(Tx) . Tyg' = '
Defining y, := u! for x € M, we get that p, € Pr(M).
Claim. For pi-a.e.(x) it holds u, € €vgp(M).

Let f € C(M). Then by the ET. and since A =, J,

(@) 3 BTN = [ Fdue (o)

It follows that there exists S; =, M with such that for z € Sy,

Anf(2) — fdu,  pg-a.e(z)

By taking a dense set of functions in C(M) we deduce the existence of a full measure set .S such
that the previous limit holds i, - a.e. for every x € S, f € C(M). This implies that p, is ergodic
forz € S.

9.3.1 Factors

Fix A C By countably generated, let {u'},cy, a disintegration of p relative to A and set
®: My C X — Z:=Pr(M) be the map ®(z) = p7'. This is a A measurable map, and it is no
loss of generality to assume that A(z) = ®~(P(x)) for every z € M.

Lemma 9.3.3. It holds ®7'(%B,) = A.

Proof. We already know that ®~'(%;) C A. For the converse, write A = 0, ,... (A, : n) and
observe that it suffices to show that for every n, A, N My C ®1(%By). As

La, (@) = p(A(2))  p-ae.(z)

it is no loss of generality to assume that the above holds for every x € M,, Vn. Since {u € 7 :
w(A,) = 1} C By (exercise), we deduce that A, N My C d~H(By). [
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Remark 9.3.1. Note that for ® : My — Z both My, ® are not canonically defined and depend on A,
but Z doesn't.

Now we analyze with more detail invariant o -algebras (i.e. sub o -algebras of 7). Here is a
way to construct invariant o -algebras: suppose that S : (X, %x, v) © is a factor of T, i.e.

ML M
of
X —S>X
where ¢ : M — X is surjective (mod 0), 1, = v. Then A := )~ '%B satisfies
T'A=9"1S'Bx) C Y H(Bx) = A

Since Ty = p we deduce T-* A =, A. Observe that if furthermore S~'%Bx = %Bx (that is the case
for example if S is an automorphism, or if &, (S) = 0) we obtain that 7' A = A.

Proposition 9.3.4. Let A be a T -invariant o -algebra. Then there exists a factor S : (X, Bx,v) O
of T such that A =, ¢ '(%Bx), where ¢ is the semi-conjugation between T and S.
Moreover, if T is an automorphism then S can be chosen to be invertible.

Proof. By theorem theorem 9.1.4 we can assume that A is countably generated. Consider the map
¢ : My — Z as before and define S =T, : Z ©. Since A =, T, it follows that So ¢ = ¢ o T
The mesurability of S is considered in the Lemma below. [ |

Lemma 9.3.5. Let M, X be compact metric spaces and consider a measurable map T : (M, B\ ) —
(X, Bx) between them. Then T, : Pv (M) — Pv(X) is measurable.

Proof. For f € C(X) we have the commutative diagram
Pr(M) > p——=Tu € Pr(X)
er\()T\ ~ o Lev]c
[ foTdu

By arguing as in the second part of theorem 9.2.1, it is enough then to show that for f fixed the
ap ev.r is measurable (observe that ev; is continuous). Now g = f o7 is a bounded measurable
function, hence it is the uniform limit of simple functions; as limits of measurable functions are
measurable, it is enough to show that

A€ By = 2 u(A)

is measurable. If A is open then this is easy. In general, define
E ={A € By : evy is measurable }.

Consider an increasing family (A,), C £ and let A := N, A,; since
eva(p) = lim evy, (1)

we conclude that ev, is measurable (is a limit of measurable functions). Similarly, £ is closed
under increasing unions. Hence £ is a monotone class that contains the open sets of M, and thus
by the Monotone class theorem, %y C £. [
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Let us recapitulate: given a countably generated o -algebra in M we can find a compact metric
space Z, a full measure subset M, C M and a measurable map ¢ : M, — Z such that

* A=371(RBy).
* & 1(P(x)) = A(x) for all z € M.

This looks a lot like a quotient space. The “small” missing detail is that ® is not surjective.
But, couldn’t we just take 7’ = ®(M,)?

The problem is that () is not in principle a Borel subset of Z. To remedy this issue we
need a little of abstract theory.

Analytic sets We follow [1]. Contrary to what Lebesgue thought, the image of a Borel set under
a measurable function is not always a Borel set. The first example of such a set was given by
Souslin.

Definition 9.3.1. Given an standard measure space (M, %B\) we say that A C M is analytic if there
exists (X, %) standard space and f : X — M measurable such that A = f(B) for some B € %Bx.

We have the following.

Theorem 9.3.6. Let (M, By, pu)be a standard probability space. If A C M is analytic then there
exist B, N € By such that AAB C N, u(N) = 0.

Theorem 9.3.7. Assume that M, N are standard measure spaces. Then if f : (M, %Bu) — (N, %BN)
is measurable and injective it follows that Im(f) € %x.

Now consider (M, %)) standard and A € %By;.

Lemma 9.3.8. There exists a continuous bijection of some Polish space into A. In particular there
exist a Polish topology on A.

Proof. Define
€ ={A € By : 3X Polish and h : X — A bijective and continuous}.

We’'ll show that £ contains the open sets and is closed under countable intersections and disjoint
unions. By A.1.1 £ = %), and we are done.

That contains the open sets it is a consequence of the classical Alexandroff’s Theorem, namely
that open (or more generally, G5) subsets of Polish spaces are Polish. Now suppose that (A,), C €
and fix continuous bijections A, : X,, — A,,. Consider

X = {y € HXn : hn(Qn) = hn+1(yn+1)vn}'

Then X is closed in [ [, X,, and since the countable product of Polish spaces is Polish, X is a
Polish space. Let h : X — N, A, given by h(y) = hy(y1). It is clear then that A is bijective and
continuous, hence N, A,, € £.

On the other hand, if the family (A,),, is pairwise disjoint we define X := &, X,,, which is
Polish with the metric

ax (. 2) dx, (z,2’) ifz,2’ € X,
r,x) = )
X 1 otherwise
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and define h : X — U, A, by h(z) = h,(z) if y € Y,,. Again it is immediate that A is a bijective
continuous function, hence £ is closed under countable disjoint unions, and the proof of the
Lemma is complete. [ |

We also need the following.

Theorem 9.3.9. Let (X, %x) be Polish space, Y a separable metric space and f : X — Y Borel
measurable. Then there exists a finer Polish topology T on X such that

* o(7) = B
e f:(X,7) = Y is continuous.

Back to our setting, we were considering A € %), M standard, and thus by lemma 9.3.8 there
exists a Polish topology on A. Observe that by the same Lemma we obtain that inc: A — M is a
Borel map from a Polish space to a separable metric space, hence by the previous Theorem we
can assume that inc is continuous. If %, denotes the o -algebra associated to A, then for every
open set U C M we have

inc 'U = ANU is open ,

and therefore By N A = 0,5 4en.(ANU : U C X open ) C By: since A € By we have equality,
i.e. B, is the trace o -algebra of A. We have proved:

Theorem 9.3.10. If (M, By, p) is a standard measure space and j1(A) > 0 then (A, By N A, 114)
is a standard probability space.

Corollary 9.3.11. Let (M,%wm), (N, %Bn) be standard spaces and f : M — N measurable and
invertible. Then f is an isomorphism, i.e. f~: N — M is measurable.

Proof. Let A € By. Then (A, By N A) is a standard and f|A : A — N measurable and one to
one. Hence by theorem 9.3.7 it holds that f(A) is measurable. From here follows. |

9.3.2 Quotient Spaces

Let (M, %\, 1) be a standard measure space and A C 9%, countably generated o -algebra.
Construct as before ¢ : My, — Z where M =, M, € A,Z is a compact metric space and
d~1(By) = A. We also assume that &~ (®(z)) = A(z) for all z € M. Equip Z with the measure
v:=opu.

The set ®(M,) is analytic, hence by theorem 9.3.6 there exist 7', N' € 9%, such that
O(My)AZ' C N and v(N') = 0. Define M 4 := Z' U N': then M 4 € % has full v-measure, and
in particular (M4, B ., v) is a standard probability space. Moreover, the map 7 := ®|M; — M4
is measurable and surjective - a.e.v, in the sense that M4 \ Im(7) is v -null.

Definition 9.3.2. The space (M4, By, = Z N M, v = mp) is said to be a quotient space of M by
the o -algebra A. The map © : My — M 4 is called the projection.

Observe that
d W_l(%MA) = A.
o 7l (n(z)) = A(x).
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We can thus think M 4 as the space of atoms of A, where 7(z) = A(x) and
* Bu, ={BCMy:7(B) e A}

® V=T

Remark 9.3.2. Note that M 4 is NOT only determined by the atoms of A, but also by the structure
of A.

For ¢ € M, define u¢ = p! where n(x) = &; then uf is a well defined probability on M
and furthermore the map ¢ — ¢ is measurable (it’s the inclusion in %#(M)). It follows that if
f € Fun(M) is bounded (or positive) then the function

€%MO—/ﬁM

is By, measurable and furthermore

[ thante) = [ Lo dut) = [ an) = [ ran

i.e.

Mﬂz/%ﬁﬂM@ ©9.1)

Sometimes the disintegration theorem is presented in the above form [25].

9.4 Measurable Partitions

Back to partitions.

Definition 9.4.1. Let P C %y be a partition. We say that P is a measurable partition if there exists
a countable symmetric family {A,}, C Bm and My C M of full measure such that

r € My = P(x) = ﬂ A,

Andz

Clearly if P is measurable then A = o, ... (A, : n) is a countably generated o -algebra whose
atoms coincide with the elements of P almost everywhere. In particular, we can consider the
quotient space Mp = M 4 which is a standard space. Reciprocally, given a partition P we consider
My = M/{x ~y < P(z) = P(x)}, 7 : M — M, the projection and equip M, with the o -algebra

Bp = {U : 77 (U) € By}

It follows that = : (M,%Bum) — (Mp,PBp) is measurable, and we equip this space with the
probability v = 7y as usual. If (Mp, %Bp, v) is an standard space then using the separability of %p
we easily deduce that P is a measurable partition. We record this result as follows.

Corollary 9.4.1. If P C By is a partition, then P is measurable if and only if (Mp, By, V) is
standard.
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Example 9.4.1. We can use the previous Corollary to show that some partitions are not measurable.
The classical example is the following. Consider ¢, : M = T? © an irrational flow and let P be the
partition consisting of the orbits of ¢;. Each atom of P is an (immersed) sub-manifold of M, hence
a Borel set. Let \ be the Lebesgue measure and consider the quotient space My as described above.
Now if A C Ms has positive v-measure, by ergodicity of ¢, it follows that \(A) = 1. In other words,

B =, {0, Mp}

but since My is uncountable, we deduce that (Mp, By, ) is not an standard space. Therefore P is not
measurable.

9.5 Lebesgue Spaces

As discussed, Borel/standard probability spaces correspond to spaces (in the continuous case)
isomorphic to [0, 1] with its Borel o -algebra, equipped with the Lebesgue measure. Now we
discuss those spaces isomorphic to the completion of %y 1), i.e. £ ).

Definition 9.5.1. We say that (X, L, i) is a Lebesgue space if it is complete (as measure space) and
isomorphic mod 0 to the completion of a standard probability space.

Note that if (X, £, 1) is Lebesgue then there exists X, C X of full measure and a Polish
topology on X such that £ N Xy = ¢(%x,). A related concept is the that of basis of a probability
space.

Notation: Recall that if (X, A, ;1) is a probability space, then A" denotes the completion of A.

Definition 9.5.2. Let (X, A, u) be a measure space. We say that this space is separable if there
exists £ C A countable such that

1. For o, ,.(&) = A"
2. © #y € M then exists E € £ such that 15(z) # 1g(y).

In this case we say that & is a basis of the space.

Clearly if (X, £, i) is a Lebesgue space then it is separable, but the converse it is not true. To
see this we observe the following fact. Suppose that (X, £, 1) is separable with basis £ = {E,, },
and define ¢ : X — Q := {0,1}" by

() = (La,(x),...,14,(x),...).

Then (2 is a compact metrizable space and ¢ is measurable; furthermore ¢ (z) = v (y) if and only
if 1, () = 1g,(y) for every n, which implies that = = y since £ separates points. Therefore ¢ is
one to one.

Let Qx := ¢ (X) and consider its trace o -algebra Cx = Bo N Qx. Then v : (X, o
(Qx,Cx) is measurable, and we can consider vy := .

&) —

alg.gen.(

Lemma 9.5.1. The map ¥~ : (Qx,Cx) — (X, Ousygen.(€)) is measurable.

Proof. The set
G={A€ 0.y, (E):Y(A) €Cx}

is easily checked to be a o -algebra. Observe that ¢/(A4,) = Q2N X, ' (1) where X,,(w) = w,,, hence
A,, € G and therefore G = 0,,,,....(£). The result follows. [ |
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Corollary 9.5.2. If (X, L, ;1) is separable then it is isomorphic to (Qx,Cx",vx).
We can now give the following characterization of Lebesgue spaces.

Proposition 9.5.3. The space (X, L, ;1) is Lebesgue if and only if it is separable and Qx € B, .

Proof. Assume that (X, £, ;1) is Lebesgue and consider M =, X standard such that LN M = Bt -
Let ¢) : M — ( the map constructed above. By theorem 9.3.6 /(M) € B has full v measure,
and since ¢ (X) D (M), it follows Qx = ¢(X) € By .

Conversely, if Qx € B, , then there exists Q. € B, such that v() = 1 and by the previous
corollary (X, £, ) is isomorphic (mod 0) to (€, %, ,v), which is a Lebesgue space. u

Example 9.5.1. Consider ([0,1], ZLjo1, #) and let X C [0, 1] with A*(X) = 1, A\,(X) = 1. Define
Lx = Loy NX and p:= \*|Lx; clearly (X, Lx, jt) is separable, but 1)(X) is not in the completion
of Bq with respect to v, therefore is not a Lebesgue space.

We finish this part by noting that the technology of disintegration of measures works without
significant changes for Lebesgue spaces. If (X, £, i) is Lebesgue and A C L is a o-algebra, then
it is countably generated mod 0 so we can disintegrate ;. by A.

Exercises
1. Consider an increasing (decreasing) sequence (A, ), of sub o -algebras of %,; where M is
standard, and let A = Vv, A,, (resp. N,,.A,,). Show that there exists M; € 9By of full measure
and such that for z € M,

A, W An
I

Nk o0
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APPENDIX A

Measure and Probability

A.1 Probabilities and Measures

In this course it is assumed that the reader has basic knowledge of measure theory. In this part
we review some facts that will be used in the main text.

Let M be a metric space and %), its Borel o -algebra, that is, the smallest ¢ -algebra that
contains the open (or closed) sets. Below we establish an useful characterization of %,;.

Lemma A.1.1. Suppose that C C 2M is closed under countable intersections, countable disjoint
unions and contains the open sets. Then %By; = C.

Proof. Let C be the smallest class (Zorn) that contains the open sets and is closed under countable
intersections and disjoint countable unions. Clearly C C 9%,;. Consider

E={AeC:AeC}

and note that if /' C M is closed, then F' = N°,D(F,1/n) hence £ contains the open sets.
Suppose that (A4,), C C and let A := N, A,. Then A € C and A° = U, AS. Using disjointification
we can write A¢ as a disjoint union of elements of C, hence A° € C and hence A € £. This implies
that £ C C contains the open sets, is closed under disjoint unions and intersections, hence £ = C,
i.e. C is closed under complements. But then C is a o -algebra and thus C = %,;. [

Let us fix (2, B, 1) a probability space; C C %, is called a
1. w-system if it is closed under finite intersections;

2. A-system if Q € C, C is closed under complements and under disjoint countable unions.

Lemma A.1.2 (Dynkin’s lemma). Let C be a w-system generating %Bq and A a \-system such that
C Cc A. Then A = %q,.

As a corollary we get

Corollary A.1.3. Let p,v € P+(Q2) such that ;1(A) = v(A) for every A € C where C is a 7 - system.
Then p = v.
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A.2 Integration on Probability Spaces

Now we recall some basic notation and facts from probability theory. Throughout this part
(M, By, 1) will denote a fixed probability space.
Measurable functions X : M — R are called random variables (rv). If X is a rv then

px = X, € Pr(R)
is the distribution of X. For B € %y, it is usually written
px(B) = w(X € B).

More generally, for X, ---, X, rv’s the function X = (Xy,---,X,) : M — R" is measurable
(with respect to %Bgn): it is called a random vector. In this case

px = Xup € Pr(R")

is the joint distribution of X, --- | X,,.

Definition A.2.1. Fox an integrable rv X we write

B() = [ X

and is called the expected value (or expectation) of X.
It follows by lemma 2.1.4 that

Bu(X) = [ tdux(®)

In general, if ¢ : R — R is measurable with E,,(|¢(X)|) < oo, by approximating ¢ by simple
functions we deduce

E, (6(X)) = / o(t) dpuxc (1)

Definition A.2.2. For X € £?(M, u) its variance is defined as
var(X) == [| X — ]E/L(X)Hiz = EM(XQ) - (EAL(X»Q
The standard deviation of X is
o(X) =sd(X) = yvar(X) = || X —E,(X)]|4
Definition A.2.3. For X,Y € %?%(M, ) their covariance is defined as
cov(X,Y) = E,((X —E,(X))(Y —E.(Y)) = E,(XY) —E,(X) - E,(Y)
Note that by Cauchy-Schwartz inequality,

cov(X,Y) <sd(X)-sd(Y) < +o0.
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Definition A.2.4. For X,Y € %%(M) their correlation is defined as

cov(X,Y)

pIAY) = sd(X) - sd(Y)

with the convention that J = 1.

By the inequality above, 0 < p(X,Y) < 1. Now we’ll state a very useful lemma.

Lemma A.2.1. Let X > 0rvand p > 0. Then

E,(X?) = p / (X > 1) dt.
0

Proof. We compute,

X(w) 00
B, = [ X0(@)dnte) = [ aut) [ tae= [ auto) [T oo o0t
Q 0

/ dt/ptp Mo, x ) (1) dpa(w)

by Tonelli’s theorem, and since 1 ;x> (w) = Ljo x(w)(¢) it follows

:/ dt/ptp_l]l{x>t}(w) dp(w) :p/ (X > t) dt.
0 Q 0

[
As a consequence, if X > 0 then
E,(X) = /Ooo (X >t)dt (A.1)
hence (since Fy(t) = u(X > t) is decreasing),
fju(x >n) <E,(X) < fju(X > n) (A.2)
n=1 n=0

The function ﬁx(t) appears sufficiently often in applications to deserve a name.

Definition A.2.5. If X is a rv, its tail distribution is the function ﬁx(t) = pu(X >1).

Lemma A.2.2 (Markov inequality). Let X be a rv and g : R — R a monotone function such that
exists E,(g(X)). Then

- 1
Fe(t) = p(X = 1) € o /{ Gl

Proof. With no loss of generality assume g(¢) # 0. Then

20 = [ 1@ ) < [ 1?5 ) < /{ g(X)dP.
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Corollary A.2.3 (Chebychev inequality). Let X, € £2. Then

var(X)

p(X —B,(X0) 2 1) < 2

Proof. Indeed, by the Markov inequality applied to Y = (X — E,(X))?,

WX =B, (X)) 2 0) = (v = ) < =) _ vl

A.3 Independence

The definition of independence lies at the heart of probability theory. In chapter 7 we’ll investigate
this notion from the dynamical point of view.

Definition A.3.1.

1.

Xy, -+, X, rvare independent if the distribuition of the random vector X = (X1, -, X,,) is
the product of the distributions of the X;.

The events A; € Bq, 1 < i < n are independent if 1 4,,--- ,1 4, are independent.

The sub o -algebras Ay, --- A, C PBgq are independent if every collection of events A; € A;,1 <

i < n are independent.

An arbitrary family {A;}ic; of sub o-algebras is independent if every finite sub-family is
independent.

Remark A.3.1.

1.

Consider X;,---,X, rv and let v; :== X;u,v = Xv where X = (Xy,---,X,) : M — R™
Observe that v = [[_, v; if and only if for every family of sets {B;}_,, B; € %Br we have

v(By x -+ By) = [[vi(B))
which is equivalent to

p(X1 € By, , X, € By) = [[ u(Xi € By).

=1

Above we used that the rectangles {B; x --- x B,} generate %Bg». In particular, taking
X; =14,,A; € By and B; = {1} C R we deduce that A,,--- , A, if are equivalent then

M(m A) = H 1(A;) (A.3)

On the other hand, it is easy to see that if the above is true then the equality is also valid by
changing some of the A; by their complement (which amounts by taking B; = {0}). In the
end, Ay, --- A, are independent if and only if eq. (A.3) is valid.
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2. The rv’s X,---, X, are independent if and only if 0., 4en.(X1), "y Outggen.(Xpn) are inde-
pendent. As a consequence, an infinite family of rv’s (X;);ea 1s said to be independent if
{utg.gen.(Xi) }ien s a family of independent o -algebras.

For independent rv’s it is sometimes possible to compute the distribution of combinations of
them. Let us see a typical example.

Example A.3.1. Let X,Y indep. rv’s. If E € B2 we obtain by Fubini’s theorem,
< o (E) = [ pr(Bie) (@) = [ Y € Bay) dix(o) = [ (2. ) € B) (@)
Take B € Bg, E = {X +Y € B}: then u((z,Y) € E) = u(Y € B—1x) = py(B — x), hence

[e.e]

WX Y €B) = p((X.Y) € B) = [ (B =) dpx(a) = (x + ) (B)
It follows px iy = px * y-.
We leave the following as an exercise for the reader
Proposition A.3.1. If Xy,--- , X,, are independent, then E,([[;_, Xi) = [ [}, E.(X,).

We end this part with a famous Lemma.

Lemma A.3.2 (Borel-Cantelli). If (A,), is a sequence of independent sets and ) i(A,) = oo,
then p(limsup,, A,) = 1.

Proof. Recall that limsup,, A, =, U,>;, An. We compute

plimsup A,) = 1= pu((J () A7) = 1= limp((7) A7) = 1 = Jim [ ] (A7)
n n=~k

k n>k n>k
=1-lim Hk (1— p(An))

and since 1 —z < e * for all z € R,

. ST _ 1
= u(hmnsup A,)>1 hlgn exp < Zku(An)) 1

Example A.3.2. Consider Ber(py, -+ ,px) with n-projection 7, : Q) — {1,--- k}. Fix 1 <i <k
and consider A, = {m, = i}; then (A,), is an independent family and

D n(An) =) pi=oc.
n=0 n=0

By the Borel-Cantelli Lemma, for - a.e.(w) the sequence w has infinitely many entries equal to i.
This simple fact can be improved using the Ergodic Theorem (or the Strong Law of Large Numbers):

for p-a.e.(w),

1
lim —#{0<j<n:w; =i} =p;,.
non
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A.4 Conditional Expectation

Now we go over the theory of conditional expectation that is required for our course. For more
on this topic the reader can consult essentially any book on probability theory.

There are several ways to think about conditional expectation (and as usual, different
approaches come handy in different situations), but here is my favorite one: suppose that in a
probability space (M, By, 1) we are given A C By a sub o -algebra and f € £'(By).

Question. What is the “best” approximation g € £'(A) to f?

Is not that clear what this “best” means, so to make some progress let us consider the same
problem in £2. Now we are in business: H = £*(%;) is a Hilbert space, and K = £?(A) C H is
a closed subspace (£? spaces are complete, hence closed), therefore for f € H there is a well
defined notion of best aproximation in H, namely g € K the orthogonal projection of f on K.
Indeed, if E,(:|.A) : # — K denotes the orthogonal projection, then

Vhe K, h#Eu(f [ A) = [If = Eu(fl Al < [If = hlls-

The condition above is equivalent to the fact that f — E,(f|A) L K, i.e.

VhE LA, (f~B,(lAL0) =0~V e A [ Fau= [BrA A4

Observe that the previous line completely characterizes E,(f|.A): if g € £*(A) is such that
VAEAi/fd/L:/gd/L
A A

then g £ E,(f]A).

The (linear) operator E,(-|A4) : (£%(Bum), ||-[l+:) = (L%(A),||*|l+=) is a projection, and there-
fore bounded (with norm = 1); we seek to extend it to a bounded linear operator E,,(-|.A) :
(LYBm), || )ler) = (LEHA), ||]|41)- Since L?(By) € L1(By) is dense (with the ||-||,» norm) and
£ is complete, it suffices to show that:

() (Faazo © LX), I fuller — 0= [Eu(FIA) o — 0

Now fix f € £%(%y) and let
@)
o) { fla) £ 0

[f1(x)
0 f(x)=0
Then g is A measurable, |g| < 1 and |f| = ¢ f: therefore,
o= [9-fdn= [ o BuAA < [ 1] = (1A

and (x) follows.

We deduce that there exists an extension of the orthogonal projection E,,(-|A) : (21(Bwm), || |ls1) —
(Z(A), || |ls) with ||[E,,(-].A)|| = 1 (i.e. a contraction) satisfying that for every f € 2!, the function
E,.(f]A) € £'(A) is the unique .A-measurable function satisfying

vaed [ fau= [ B G~ ez, [orau= [EAd @
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Definition A.4.1. For f € 2! the map E,(f|.A) is the conditional expectation of f relative to A. If
f =14 we denote j1(A|A) :=E,(14|.A) and call ;1(A|A) the conditional measure of A relative to A.

Remark A.4.1.

1. E,(f]A) is not a function, but a class of functions in £*(By). It is seldom the case that there
exists a canonical representative for the conditional expectation. The reader should keep this in
mind in chapter 9.

2. u(A|A) is not a number, but a class of functions. See the example below.

Example A.4.1. Suppose that P = {P,--- , Py} C 9B is a finite partition of M (u(P; N P;) =0 if
i # j) and consider A = 7, ,...(P). For f € &' one verifies directly that the function

d

1
g = Z (u(ﬂj) /Pj fdu> Lp, = > Eu, (f)p,

Jj=1 J=1

is
e A measurable, and
e ifAc AthenE,(f;A) =E,(g; A).

By uniqueness we conclude g = E,(f|.A) almost everywhere.
Observe that if P = {B, B°} then A = {0, B, B, M} and if A € By,

HALA) = pp(A)Lp + upe(B) e
and therefore p(-|.A)|%y N B coincides with pup.
Example A.4.2. Using uniqueness of the conditional expectation it is easy to see that for f € By, it
holds
1 E,(fINo-w) = [ fdp
2. Eu(f|%Bm) = f

A.4.1 Basic properties of the Conditional Expectation

CE-1 If f > 0 then E,(f].A) > 0; in other words, E,,(-|.4) is a positive operator on £*(%y)

Proof. f A= {z:E,(f|A) <0} then A € A, thus0 > [, E,(f|A)du= [, fdu > 0. It follows
that [, E,(f|A) du = 0, which implies that x(A) = 0. |

CE-2 If f € £'(By) then

By (FIA)] < Eu(f]]A)

It follows that if f € £°(By) then E,(f|A) € £°(A) and | E,(f|A)||z~ < || f||l¢~ (therefore
E,(-|A) : 2>(Bm) — L>(A) is a contraction).
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CE-3

CE-4

CE-5

Proof. Direct from CE-1. [

Tower law: if C C A C By are sub o -algebras, then for every f € £ (%By) it holds
E.(fIC) = EL(E.(f]A)C) p-a.e.
Proof. This is clear for projections in &?; in general use a limit argument. [ |

Suppose that (M, By, ), (N, B, v) are probability spaces and 7' : M — N is a measurable
map with Ty = nu, and A C By is a o -algebra. Then for every f € L1 (By),

TE,(f|A) = E,(TfIT'A) v-ae.

Proof. The function g = TE,(f|A) is T'(.A) measurable, and if A € T'(A) then A=T"'B
for some B € A, therefore

[ow=[Einaan= [ rau= [ rra

We deduce that g = E,(Tf|T ' A)v-a.e.. |

Let (fn)n C Fun(M).

(a) Dominated convergence for CE: if there exists g € £'(%\) such that for every n, | f,,| < |g]
and (f,), converges - a.c. to f, then lim, E,(f,|A) = E,(f|A)-a.e..

(b) Fatou’s Lemma for CE: It holds E,(liminf, f,) < liminf, E,(f,).

Suppose that (f,), C £'(%Bu) converges pointwise to f and for all n, |f,| < g for some
g € £Y(By). Then lim, E,(f,|A) = E,(f]A)-a.e..

Proof. Let h, = supys,|f — f.|; it follows that h, ~\, Op-a.e.(z); let b = lim, | E,(h,)
(pointwise limit). As 0 < h,, < 2- g, we get that (hp)n € £Y(%B) is a dominated sequence.
Therefore, by the TDC it converges to zero in £ (%), and since the CE is a continuos positive
operator in £!, we get that lim, ||E,(h,)[|,» = 0, hence

0< ||All = /hdu < /E#(m At —— 0= h = Op-a.e.()

n—oo

Finally, note that [E,(f) — E,(f.)| < E,.(h,), thus converges to zero u-a.e.(z) (and in £*, of
course).

The second part is left as an exercise. [

Recall:. A function ¢ : I C R — R (I interval) is convex if for every z,y € I, A € [0, 1] it holds

oAz + (1= Ny) < Ap(x) + (1= N)o(y),

and is strictly convex if the previous inequality is strict for x # y, A € (0,1). The function ¢ is
concave if —¢ is convex.
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If ¢ is convex then' for every a < c < b € I,

b(c) — ¢la) < ¢(b) — ¢(a) < ¢(b) — 425(0)7 (A.6)
c—a b—a b—c
which in turn implies for every a < ¢ < d < b,
olc) = 6la) _ 9(b) — 6(d) (A7)

c—a - d—b

Fix xo = b and note that by eq. (A.6), the function = — % is increasing in I N (—o0, x),
therefore there exists the left derivative at x,, ¢'(xo—). Slmllarly, there exists the right derivative
¢'(zo+) and by eq. (A.7) we get ¢'(xo—) < ¢'(xo+). From this follows that ¢ is continuous.

Moreover, again using eq. (A.7) one verifies that if I,,(x) = ¢'(xo+)(x — z0) + ¢(x0) is the
equation of the right-tangent line, then ¢(x¢) > l,,(x) for every x € I; if ¢ is strictly convex then the
equality can only occur at x,. In particular we have

¢(x) = sup{ly, (o)} (A.8)

xo€l

One can even choose a countable family of affine functions if desired.
Now we prove a central inequality.

Proposition A.4.1 (Jensen inequality). Let C C By be a o -algebra and f € £ (orin Fun(M)so).
If ¢ : R — R is convex and ¢(f) € £ then

O(E,(f|C)) <E.(do fIC) -a.e.

In ¢ is strictly convex then we have equality if and only if f is C -measurable.
Particular case: It holds

o[ raw < [ooran

If ¢ is strictly convex we have equality if and only if f is constant - a.e.

Proof. Write ¢(z) asin eq. (A.8) and write [, (z) = a(zo)x+b(zo): then ¢(fx) > a(x)(fz)+b(xo),
therefore

Eu(¢ o flA)(xo) = S}Elop{a(:vo)Eu(f\A) +b(x0) } = G(E,(f[A)).

For the second part, let zo = E,(f|A)(z), A= {f # E,.(f|A)}: then
() = ¢(fr) — a(Bu(fIA) (@) f(x) + b(Eu(fIA)(x))

is a non-negative function, positive on A with integral zero, and thus u(A) = 0. |
Proposition A.4.2. If f € Fun (M) then for 1 < p < oo it holds [|E,(f|C)|ls: < ||f|ls»-

Proof. We have already seent the cases p = 1, 00. For 1 < p < oo consider ¢(t) = |t|P: ¢ is convex,
therefore

I, (fIC)I% / H(E,(FIC)) du < / E, (6 0 fC) dy = / P = £

!In fact this condition is equivalent to convexity.
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Dynamics and conditional expectations Suppose that 7" : (M, By, 1) — (N, BN, v) is given,
and let A C By is a sub o -algebra. Let f € £(%By).

Claim. TE,(f|A) = E,(T f|T~'A) almost everywhere.
Indeed, g = TE,(f|A) is T~' A measurable, and if B=T"'A € T~' A, then

/Bgduz/AIEV(f\A)dVZ/AdeZ/deu,

therefore the claim follows.

Corollary A.4.3. Let T : (M, By, 1) O be an endomorphism, and A C Jr a o -algebra. Then for
every f S 31 (%M)J

TE,(f|A) = Eu(Tf|A).
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APPENDIX B

The Spectral Theorem for Unitary Representations

In this part we cover the version of the Spectral Theorem needed for Ergodic Theory. There are
several proofs available in the literature of this important result. However, I found surprirsingly
difficult to find a self contained presentation for the case of unitary representations of Abelian
groups: either the proof is given for the case of a single unitary operator and the general case is
said to follow along the same lines (which, I honestly don’t see how), or some heavy machinery
is invoked and then the theorem is said to be trivial corollary. As these two options seemed
unsatisfactory to me, I decided to write the details for the case in consideration. The presentation
is based on one due to Choquet, and some parts are adapted from Katnelson’s notes.

Convention: if 7 is a Hilbert space, the inner product (, ) is assumed to be linear in the second
coordinate, and anti-linear in the first one.

B.1 The Spectral Theorem

Convolution and the Group Algebra

For the rest of this part G denotes a topological group that is
e Abelian,
* locally compact and Haussdorf.

As explained in Chapter 4, GG has a unique projective class of Haar measures, and we fix one
of them which we denote by \. Recall that the dual group of G is

G":={x: G — T : x continuous homomorphism}.

Elements of G* are called characters, and G* is assumed to be equipped with the topology of
uniform convergence on compact subsets of G. With this topology, G* it is a locally compact
Hausdorff space.

Example B.1.1.

1. The dual group of Z is T: for a character x : Z — T is determined as x(n) = ", a = x/(0).
Thenr_,ox : Z — T is the trivial map, and thus x induces an isomorphism Z* — {ra}a (0,1) &
T. Similarly, (Z%)" = T¢
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178 The Spectral Theorem for Unitary Representations B.1

2. The dual group of T¢ is Z2 (cf. remark 4.1.4).

3. The dual group of R? is R%; given x : R — T continuous homomorphism, consider its lift
X : R — R satisfying x(0) = 0. By uniqueness of lifts one verifies easily that x is a continuous
group morphism of (R, +), thus is linear. This implies that R* ~ R, and the d-dimensional
case follows by taking projections.

Notation. If x € G*, g € G we write x, := x(g).

Observe that G — G** via the natural evaluation
g — evg . X —> Xg

This map is easily seen to be a continuous monomorphism of groups: that it is also surjective is a
famous result due to Pontryagin.

Theorem B.1.1 (Pontryagin duality). The map ev : G — G** is an isomorphism of topological
groups.

We'll be interested in the space £1(G). As every £! space, £'(G) is a Banach space. It turns
out that it possesss some additional structure.

Definition B.1.1. A Banach space A is called a (unital) Banach Algebra if there exists a (necessarily
continuous) product - : A x A — A such that (A, +, ) is an algebra (over C or R) with unity e € A,
and furthermore

z,y € A= [z -yl < |z|llyl

A Banach Algebra is a x-algebra if it is equipped with a continuous map * : A — A such that

o Mz +y) = " +yh

koK

L = XI.
o (zy)" =yra~.
o lz*|| = |||

Example B.1.2.

1. Let A = C(M,C) where M is a compact metric (or Hausdorff) space. With respect to the
uniform norm A is a Banach space. Defining the product in A pointwise and f* = f for f € A
it follows that A is a Banach *-algebra.

2. Consider a Hilbert space H and B(H) = {A: H — H : Ais linear and bounded}. Equipped
with the operator norm %(#H) is a Banach space; if we define the product by composition and
A* =adjoint of A, then it is direct to verify that 9By is a - x Algebra. More generally, we could
consider A C B(H) closed sub-algebra.
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Now let us see that £!(G) is a Banach *-algebra. First we define the product:

o € LYG) = hx) = [+ f(x) = / f(x— ) f (y)

This is the convolution of f and f’, and regrettably in this case the symbol for the product
coincides with the one for the involution; hopefully this won’t cause much confusion. Of course
it is necessary to show that & € £!(G): the map F(x,y) = |f|(x —y) - | f'|(y) is measurable on
G x (G, and by Tonelli’s theorem,

[ P v iy = 1107

Hence by Fubini’s theorem the function y — f(x — y)f'(y) is in £*(G) for A-a.e.x, and in
particular h(x) is well defined A\ almost everywhere. From the previous argument it also follows
that

LF 5 Fllar < A1l 17

As for the involution, let 7' : G — G the map 7'(z) = —x and observe that 7'\ is invariant under
every traslation, thus a Haar measure. By taking any set U such that \(U) < +oco and noting that
ANUNT(U))=TANUNT(U)), we deduce that T\ = A. Thus, is we define f*(z) = f(—x) we get

1l = / FCo)| dA(z) = / (@) dA\(x)

The other properties are even easier to check. We are almost done.

Remark B.1.1. If G is not compact, then £'(G) won’t have an identity, so it is not a Banach Algebra
by our definition. Nonetheless, the most interesting cases for us will be when the group is either 7
or R, which are not compact. For Z some direct arguments are available (see Katnelson’s notes),
and one can avoid discussing the structure of £'(Z)(= (,). Nonetheless, these don’t extend easily to
continuous case; it’s the difference between doing Fourier analysis in Z and R.

Luckily there exists a simple algebraic solution: we just “adjoin” an identity e to £'(G) and
extend all operations naturally.

Definition B.1.2. Let G be a locally compact Abelian topological group. The group algebra of G is
the space

R(G) =C®ZL(G)
obtained by adjoining an identity e to £(G).
Remark B.1.2. If G is compact then R(G) := Z(G).
The previous arguments show:
Proposition B.1.2. R(G) is a Banach x-algebra.

We conclude this part by noting that the convolution has a regularizing property. First observe
that if f € L1(G),h € £>°(G) then f  h is well defined and

Lf o Allse < [ f [l 1ol -
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Lemma B.1.3. For f € £1(G), h € £°°(Q) the function F = f * h is uniformly continuous.

Proof. Given z € G and consider the function f, = L_,h € Z}(G),

foly) = fly — )

and compute

|F(z) = F(y)| < /If(fr —2) = [y = 2)[(2)| dA(z) < lhllg=[fo = fylle-

It suffices to show then that G 5 z — f, € £!(G) is uniformly continuous.
Fix ¢ > 0 and consider c € C.(G) such that || f — ¢||;» < 5. Denote by K = supp(c) and assume
that A(K') > 0. Since c is uniformly continuous there exists a neighborhood N of 1 € G such that

€
—Cpllen < =—— V¥V N
lc — ¢l < INK) T €

which implies

€
llc — ol < =

3

and thus

If = fallsr <[ = ellar +lle = allor + ez = fallsr <€ Yz e N.

In general, note that f, — f, = (f — f,—2), thus for y — 2 € U it holds

Hfm - fy”ﬂf1 = Hf - fy—wHﬂf‘ <€

Unitary Representations and Positive Definite Functions

So far so good. Now we come to the central topic in this part: unitary representations of G.
Consider a (separable) Hilbert space # and denote

RB(H)={A:H — H: Ais linear and bounded}
U(H) ={U € B(H) : U is unitary}.

Definition B.1.3. By a unitary representation of G we mean a group morphism 7 : G — U(H) that
is SOT -continuous; meaning, if (g;); converges to g in G then for every x € H, n(g;) - * — 7(g) - x in

H.

Example B.1.3.

1.

If x € G* then x : G — S' = U(C) is (norm) continuous, hence it is a unitary representation
of G.

For U € U(H) we can define 7w : Z — U(H) by w(n) = U™ One checks directly that 7 is a
unitary representation of G.

Unitary representations of R are called one-parameter groups of unitary operators. In this case
7 is the same of a SOT continuous family {U'}ier C U(H) such that U = U' o U®, U° = Id.
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Notation. If the the representation is fixed and clear from the context we’ll write U9 = 7(g).

To move further we’ll use an idea of Bochner.
Definition B.1.4. A continuous function f : G — C is said to be positive definite if it satisfies: for
every function ¢ : G — C of finite support, it holds

> fla—d)elg)elg) =0 (B.1)

g9,9'€G

Example B.1.4.

1. If x € G* then Y is positive definite. Indeed, given c of finite support we compute

D XoXe - cl9)eld) = 1D elg)xgl* > 0.

9.9'€G

2. For G = 7, x Z, (with the discrete topology) a function f : G — C is positive definite iff the
matrix (f(7,7))s, is a positive definite matrix.

3. Here is the motivating example for all this. Supponse that = : G — U(H) si a unitary
representation of GG and let x € H. Define

flg) = (z, U’z).
We claim that f is positive definite. Indeed, if ¢ has ﬁnite support, then

S Hg-g)el)elg) = S (U7, U%) ~ I el = 0

9.9'€G 9.9'€G

Let us give a more concrete example of this general construction. Suppose that v € JM(G*)
is a positive finite measure and for g € G consider the operator M, that acts on functions
¢:G* — Cby

Myo(x) = xg0(x) x € G".

In other words, M,¢ = ev,(-) - ¢. Observe that M, preserves ¥*(G*,v), and for ¢, €
L2(G*,v) we get

(M6, Myti)ga) = / 00X () v () = (6, )z,

so M, : £*(G*) © is unitary. It follows easily that M : g — M, is a unitary representation of
G, and thus if ¢ € £*(G*), the function

£(9) = (6 My)ger) = / Yol SOOI dv(x)

is positive definite. Bochner (based on previous work by Herglotz) realized that these are
essentially all positive positive functions. You probably have seen this before: if G = Z then
G* =T and for ¢ € L*(T,\),dv = |¢|*d\ € M(T) and

f(_n) = <Mz”¢v ¢> = /[z_ndy

is the n -th Fourier coefficient of the measure v.
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For later use let us record the following basic properties of positive definite functions.

Lemma B.1.4. Let f : G — C be positive definite. Then:
* [ €Z2(G) with || fllz~ = f(0).
Cf=
Proof. Observe that f(0) > 0 (take ¢(0) = 1 and ¢(g) = 0 for g # 0). Consider g, € G and for
r e Clet
1 g=0
c(g)=qr 9=9o
0 otherwise
Since f is positive definite, >°_ . f(g — ¢')c(g)c(g) = (L4 [7[*)£(0) + f(go)r + f(—g0)T > 0.
Now observe
e r=1=2f(0)+ f(g90) + f(—go) > 0, and in particular f(go) + f(—g0) € R.
* r=1i=1i(f(9)— f(—90)) € R, which implies f(g0) — f(—g0) = f(—=90) — [(90)-

From the above one deduces easily that f(—gy) = f(g0), i.e. f* = f. Let r so that rf(gy) =
—[f(g0)|- Then

0 < (L+[r[*)f(0) +1f(=g0) +7f(g0) = 2(f(0) = [f(90)]) = £ (g0)| < £(0).

Going back to de definition of positive definite function, suppose that ¢ € C.(G) is with
(compact) support S and observe that d : S x S — C given by d(z,y) = c(x)c(y) f(x — y) is
uniformly continuous. Thus given ¢ > 0 we can find a partition by measurable sets { F}};_, and
points z; € F; such that

1S )l i — ) — / ()o@ (x — y) dA @ Az, y)| < e

ij=1

which implies that the integral above is also non negative. By approximation, the same holds for
every ¢ € £'(G). Observe also that

[ cwicifte - are s = [ ( [ @i - i ) aw
= [ ([ o+ et axe Y ax = [ ( [ eto+ i axe) ) £ ixto

-/ ( [ =t dA<y>) f@)ae) = [@xoan

=c"xcx f7(0) =" xcx* f(0)

(since f € £°°(G) the function ¢* x ¢ x f is continuous so it makes sense to evaluate it at 0).
We have shown that if f is positive definite function, then f € & where

K ={f €27 :vcegl(G),/(c**c)dezo}
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This is one of these moments when generalizing pans out: since £}(G)" = £*(G) we can
identify ¥ as a (clearly convex) set of functionals on ¥!(G); for emphasizing this point view,
we’ll denote by F,, the functional determined by ¢ € £*°((G). Define also

Fi={f € X :|flla= <1} (B.2)

Lemma B.1.5. &; C £>°(G) is w* compact and convex.

Proof. As we remarked, convexity is inmediate. For compactness, it suffices to check that &, is
w* closed in By = {f : || f|l¢~ < 1}. Take (¢,), € ¥, such that F,, = F,, converges to F, for
¢ € By, and take c € £'(G),d = ¢* * c. The functions h,, = ¢, * d, h = ¢ * d are continuous, and

() = )] < [ ldl@)lea(@) = (e dA(@) > 0
thus 2(0) > 0 and h € &,. |

Now we have all the powerful convexity machinery to study positive definite functions, and in
particular Choquet’s theory. The next lemma will be useful to identify the extreme points of ¥;.

Lemma B.1.6. Let A be a commutative Banach x-algebra and consider

K={pe A" : p(z"z) > 0,Vx € A}
Ki={peK:ple)=1}

Then
1. If p € K then p(z*) = ¢(x) and |p(z)| < ¢(1).
2. K, is convex and
Ext(K) = {p € K : p(zy) = p(x)e(y)}
Moreover, YV € Ext(K),Im(p) C T.

Functionals in a Banach = -algebra satisfying ¢(z*z) > 0, Vx are called positive. Compare with
lemma B.1.4.

Proof. For the first part, given = € A, ||z|| < 1 consider z = z*z, and note that 2* = z, ||z|| < 1.
Recall that the binomial series

-0t = 3 (2

n=0

D=

converges absolutely for » € C,|r| < 1. Hence, the element w = ), (12 ) (—1)m2" is well
defined, and moreover
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It follows that p(e) — ¢(2) = p(w*w) > 0 and 0 < p(2) = p(z*z) < p(e). On the other hand,
f((rz + se)”)(ra + se)) > 0 for every r, s € C, wich implies

0 < |r[f(z"2) +rf(2) +5f(27) +[s]*f(e).

Taking r = s = 1 and then r = 1, s = i we get (as in lemma B.1.4) f(x) = f(z*), and in porticular
for every r € R,

0 < 7?f(z*z) + 2r Re(f(x)) + f(e),

which implies that the discriminant of this polynomial in r has to be non positive, | Re(f(z))|* <
f(e)f(z"x) < f(e)*. This leads to || f|| = [[Re f]| < f(e).

Now consider ¢ € Ext(K;). Givenz € A, it can be writtenasz = 1 73 _ i ~*(e + i*z)"(e+i*z),
so by lineality of ¢ it suffices to show that for every =,y € A, p(x*xy) = p(z*x)p(y). Fix z = z*z,
and without loss of generality assume ||z|| < 1. Consider ¢ : A — C,v(y) = ¢(zy) and observe
that for every y € A

V(YY) = p(zy*zy) >0

p(y'y) — V(YY) = ey y(e — 2)) = p(y yw w) > 0,
which tell us that both v, ¢ — ¢ are in the positive cone generated by K. Using that ||¢|| =
v(e), le =¥l = ¢le) — ¥(e) = 1 —1(e), we can write

(0 o=
o T TYEITTG

and since ¢ is extremal, 1) = ty for some ¢ > 0 (if ¢)(e) = 0 or ¢(e)=1 the equality is also valid).
Evaluating in e, t = ¢/(e) = p(z*z) and thus

@ =1(e)

plz zy) = p(z"2)p(y) Vye A

as we wanted to show.
Conversely, if ¢ € K, preserves multiplication, assume it can be written as a convex combina-
tion

p=otsb Pk

Note that given z € A, a = p(a)e+ (a — p(a)e) € C - e+ ker(y), and similarly for ¢, +. It suffices
then to show that ker(¢) = ker(¢) N ker(¢). By the convex combination above we have the
inclusion D: conversely, if ¢(x) = 0 then

0 = 2p(x")p(x) = 2lp(2)|* = ¢(a"z) + Y (a"x) = d(z"x) = 0 = P(a"2)
But then |¢(z)]* < ¢(e)d(x*z) = 0 and ¢(x) = 0. Likewise ¢(x) = 0. ]

We want to apply the previous lemma to the group algebra; for this we need to check that
adjoining the identity doesn’t really make any difference.

Lemma B.1.7. Let A be a commutative (non unital) Banach x-algebra and A the x-algebra
obtained by adjunction of a unity e. Suppose that ¢ € A* satisfies for every x € A,

1. o(z*) = o(x).
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2. p(z*z) > 0.
3. |o(z)]* < Cp(x*z), for some C > 0.

Then ¢ extends a functional on A satisfying the same properties.

Proof. Define ¢(re + x) = rC + ¢(x). Then ¢ is linear, ¢(z2*) = ¢(z). For r € C observe,
@((re +x)"(re +x)) = |r|*C + 2Re(Fp(z)) + (")

= [FVC + %IQ + p(zr) - ’f(é)lQ > 0.

The last property is consequence of the previous ones (cf. the proof of lemma B.1.6 above); note
that ||¢|| = C. |

It follows that any f € F; can be extended to a functional on the group algebra satisfying the
same properties. We are ready to prove the main result of this part.

Theorem B.1.8 (Herglotz-Bochner-Weil). Let f : G — C be positive definite. Then there exists (a
necessarily unique) v; € M (G*) non negative measure such that

flg) = /*Xg dvy(x).

Proof. For what we have seen before, any functional on F, € Ext(¥;) preserves convolutions,
and is determined by its action on £'(G); here ¢ : G — C is \-essentially bounded. We claim
that z,y € G = ¢(x +y) = ¢(x)p(y). It is a consequennce of Urysohm’s lemma that given z € G

there exists a net (¢;) supported in a neighborhood of = such that ¢; A w—> 0z, and similarly, there

exists a net (¢;) with ¢;\ < dy. On the one hand,
J

Fo(@i x 15) = Fol¢s) - Fo(45)

Using that ¢ is bounded, one proves by standard arguments that

Foo) = [ pdon - [odd = ola)

and similarly, #,,(¢;) — ¢(y). On the other hand,
J

Fotoeig) = [ ([ s = 00,00 00) s o) = [ @ w0y dre) - 37 ()
since ¢;* * ¢ € C.(@), and thus it is equal to

/cb Jp(u+y)dA(u) — p(r +y)

since ¢ is bounded. By similar arguments we can establish that f* = f, so either ¢ = 0 or
1 = ||¢|lg= = »(0). Assume then that ¢ # 0 and note 1 = ¢(z)p(—z) = |p(z)|?, hence ¢ : G — T;
to prove that it is a character it remains to show that it is continuous. Take ¢ € C.(G) such that
f = ¢ =1 is different from the zero function: f is continuous and for g € G fixed,

flx—g) = /90(90 —g—yY(y)d\y) = o(—g)f(z) Vzed
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This implies in particular that f(x) # 0Vx, and moreover
plr—g) o)
flx—g)  [fl=)

Thus ¢ is continuous, hence a character. We have proved that Ext(X;) = G* U {0}.

Now given f positive definite we apply Choquet’s theorem 3.4.3 and obtain the finite measure
on vy € Ext(X) that represents f, i.e. for every I' € dff(K,),

r(f) = / o, 000,

and in particular, if ¢ € Z21(G), dA(f) = fm(le) ®A(x) dvs(x). Fix g € G and proceed as before
to find a net (¢;); such that ;; = v; d\ are probabilities on G converging w* to d,. Since f is
continuous and bounded, x;(f) — f(g). On the other hand, if v € G* U {0} it also follows

that yu;(¢) — 1¥(g). Taking a sub-net indexed by a countable set and applying the DCT to the

Vg,x € G =  is a multiple of f.

uniformly bounded functions ¢, (), it follows

f(g) = lim g, A(f) = lim PnA(x) vy (x) = / Xg dvs ().

n Ext (.7{1) Ext (%1)

With no loss of generality assume f() = 1. For ¢ = 0 the representation formula for f reads

1= f(0) = / Xodvy = / dvy = v(G7),
EXt(?ﬁ) *

and since vy is a probability, necessarily v¢({0}) = 0 which tells us that v, is a measure on G*.
As for the uniquness of v, observe that span {ev, : ¢ € G} C C.(G*) is a separating algebra

that contains the constants, hence it is dense in Cy(G*), and thus (since v; is finite) dense in

2(G*,vs). The proof of the theorem is complete. [

Remark B.1.3. There is sublety in the previous proof: the version of Choquet’s theorem that we
presented in chapter 2 assumed that the compact convex set considered is metrizable, a condition
that &, does not satisfy. It happens that Choquet’s theorem does not actually require metrizability,
but the measure obtained is not necessarily supported in the set of extreme points, since this set may
be fail to be Borel.

In our case, the set X is actually w* closed; this is a version of the well known Riemann-Lebesgue
lemma. To establish this fact consider a net (¢;) € G* U {0} such that the corresponding functionals
F; = F,, converge to ' = F,. Take c,d € C.(G) and note that

F(cxd) =lim Fi(cx d) = lim F;(c)F;(d) = F(c¢)F(d).
By approximation, the same holds for c¢,d € £'(G). Likewise, F(c*) = F(c). In particular,

|[F(c)]* = F(c*c) for all ¢ € £*(G) and hence extends to a functional F on the set obtained by
adjoining a unit to X,. Either F(e) = 0, which implies that F' is the zero functional (and thus

¢»=0), or % preserves products and is 1 on e, thus by lemma B.1.6 it is extremal. In this case F' is

a multiple of the functional given by a character, F = F(e)FX. Then
F(e) = F(e)F(e) = F(e)Fy(e) = F(e) = F(e) = 1
and F = F.. This implies that ¢ = x € G*.
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B.1.1 The Spectral Theorem for Unitary Representations

Consider 7 : ¢ — UY unitary representation of G and x € H: as we saw before the function
f(g) = (x,U%) is positive definite, and if y, denotes the measure on G* corresponding to f,
then for ¢ : G — C of finite support,

IIZ (9)U%z|3, = ng g) —IIZ 9)M,L]I%. (B.3)

Definition B.1.5. p, is the spectral measure of the element x (corresponding to the representation
7). The subspace

H, = span{U9%% : g € G}
is the invariant sub-space of x.

If G =7 (i.e. 7(n) = U™ for some U € U(H)) then H, is usually called the cyclic subspace of
x. Note that H,, is an invariant subspace for the representation .

Consider y = > ¢(9)U% € span{U% : g € G} and define ®(y) = >_ c(g)x,1; by eq. (B.3)
® preserves inner products, and thus extends uniquely to an invertible isometry ® : H, — L2(u).
Observe that for gy € G fixed and y as before,

S(UPy) = (3 (U a) = 3 elg) My 1yl = M, D(y).
g g
and arguing by continuity, ® o U9 = M, o ¢ on H,.

Definition B.1.6. Let 7 : G — U(H), 7’ : G — WU(H') unitary representations of G. We say that
7, " are unitarily equivalent if there exists ® : H — H' invertible isometry such that for every g € G
it holds

H 7(g) H

We have shown:

Corollary B.1.9 (Spectral Theorem for Unitary Representations). Let 7 : G — U(H) be a
unitary representation of a (locally compact) Abelian group G, and let x € H. Denote by m,
the restriction of w to the subspace H,. Then w, is unitarily equivalent to the representation
M: G — L*(uy), My(h) = ev, - h.

We can exploit further the same idea. Let us denote
G| = {Z c(g)g : ¢: G — C of finite support},
and remark that C[G] is an algebra over C with the product inherited from G. Given 7 : G —

U(H) unitary representation, it can be extended to a representation of algebras 7 : C[G] — C[UY]
where

C[U*] = {Z c(g)U? : ¢ : G — C of finite support} C B(H).
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In other words, we equip H with a structure of C[G]-module. If a = > c(g)g € C[G], we denote

Ut =7(a)=>_,c(g)U".
Back to the hypotheses of the previous corollary, consider a =} ¢(g)g € C[G] and compute

O(Uz) = B> _dg)U%z) =Y _clg)xg = Ml = M,(D(x)).

By linearity and continuity of &, ® o M, = M, o ® on H,; this means that ® conjugates the
representations a — U® and a — M, of C|[G]. Let us also observe that since ¢ isometry,

U Ho Ollop = | Ma : L2(12) Ollor = 1Y c(g)evl~

g

From the above we deduce that ® induces an isometry & : (C[U], ||||op) — @ : (C[M,], ||||op), an
thus it extends to an isometry ® : B(UY, H,) := C[U9] C B(H) — C[M,] C B(L?*(u.)). Given
¢ € Co(M)(supp(1..)) we can define M, : £L?(u,) O by

and is easy to check that || M||op = [|¢[|¢~. Using Stone-Weierstrass we deduce that C[M,] = { M, :
L2 () O |¢ € Co(M)(supp(ii,)}; observe also that ® conjugates the actions B(UY, H,) ~ H,
and Co(M)(supp(pz)) ~ L2(G*, u,). Summarizing, we have proved the following.

Theorem B.1.10 (Spectral Theorem for Unitary Representations - Functional Calculus). Let
7w : G — U(H) be a unitary representation of a locally compact Abelian group. Then for every
x € H there exists a unique i, € MM (G*) non-negative finite measure and a isometric isomorphism
O : H, — L*(H,) satisfying:

L lpallry = [l2I3:

2. ® conjugates the actions B(UY, H,) ~ H, and {My : ¢ € Co(supp(pz))} ~ L?(u). There-
fore, for every ¢ € C(supp(4iz)),

(. $(U9)z) = / 6(00) i (x)

where ¢p(U9) = ® o Myo d~ L.

Remark B.1.4. Similarly, we can consider
SOT(UY, H,) := clge{V : H, O: V € C[UY]}
and note that ® conjugates the actions
SOT(UY, Hy) ~H, and {M,:p € L¥(u,)} ~ L% (1)
Now take z,y € H, and define ¥ : C[M,] — C by

V(Y elg)My) =Y elg){y, Us)

g g
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This map is linear, and

I < Tyl - HZ U3 = [lylloe - HZ 9) M|l

hence extends continuously to a bounded functional over Cy(supp(u.)); by the Riesz’ representa-
tion theorem there exists a Radon measure 4, , on supp(s,) such that

U(M,) = /soduw ¢ € Co(supp(Ha)).

In particular,

<y7 Ulx > /Xg d,u:vy

Observe that since U? € U(H) for every g, it follows p,, , = 7i,,,. We now consider

Trig = {Z c(g)xy : ¢ : G — C of finite support} C £*(,)

and define ¥ : T#ig — C by

(S elo)) = [ D elohydey = WS elo)M) = Y clo) . U%)

g g

Clearly W is bounded, thus extends uniquely to a functional in %2(y,)", and therefore there exists
Y € P%(u,) such that for every ¢ € £?(u,),

= /Eso dita.

It follows that dy, , = ¥ du,; by symmetry, u,, is also absolutely continuous with respect to .
Note that 4, , = 0 if and only if

(y,U%2) =0 Vge Gyl H,.

Definition B.1.7. u,, is the correlation measure for x,y.

Again, if p € £?(u,) it makes sense to define p(UY) : SOT(UY, H,.) — C as the unique function
satisfying for every y € H,g € G,

wwwmz/ﬁww

B.2 Multiplicity

Let us start noting the following

Lemma B.2.1. Let y € H,

1. py << p, with iﬁ—z = | Pyl
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190 The Spectral Theorem for Unitary Representations B.2

2. gy~ iy & Hy = Hy,

Reciprocally, if 1 << pi, is a positive finite measure, then there exists y € H, such that p, = pu.

Proof. For g € G we compute

(y, U%y) = (Py, ®U%y) = (Dy, M;dy) = /Xg’q)Pd/Lz

and by the the uniquess part of the Spectral Theorem, it follows 1. To establish 2, note that from
what we saw before #, = H, implies ;, << p, and p, << p,. For the converse, we use ¢ and
identify

r=1

US=M, geG

Y€ L2(pa)

Then du, = |y|* du., and since by hypotheses both measures are equivalent, it follows that
y # 0 p,-a.e. Let

P = {Myy : ¢ € Co(supppiz)} C L*(p1a)

and take » € P+; it follows

/§M¢y dp, = 0VM, = /M¢(§y) dp, =0 VMy
=2y =0 pu,-a.e; sincey # 0= h=0u,-a.e.

This implies that % C £?(u,) is dense, hence £?(u,) = L2 ().
Now suppose that v << p, is a positive measure finite measure, and denote h = %: then
0<he % u,),and thus vh € £L%(i,) = Im ®, hence vh = ®(y) for some y € H,. The space

., has a natural involution * coming from taking the adjoints of the U9, and ®(y*) = ®(y) = V/h.
We conclude that f# = |D(y)|? = ®(y*) - D(y) = h, thus u, = u |
o

Remark B.2.1. In particular, if y € H, then ®(y) = « - \/(35; ), where o € L*°(G*, 1) has
modulus one.

Now let us observe the following.

Proposition B.2.2. There exists a UY - invariant orthogonal decomposition H = & __, H., where

F is finite or countable. Moreover; if 0 # z € H is given, one can take F' S z.

zeF

Proof. Consider (e,),>1 an orthonormal basis of . Given 0 # z € H define 1 = 2. If H,, = H
then we’re done. Otherwise, no = min{n > 1:e, ¢ H,,} < oo, and let z, be projection of e, in
Hy i eq, - en, € My & Hay, and observe that the previous sum is an orthogonal sum (because
H, is UY invariant). If H,, & H,, = H we are done, otherwise we keep going. In the end we
get a decomposition ), . » H, containing an orthonormal basis, thus coincides with the whole
space. |

To take advantage of the previous decomposition let us note the following:
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B.2 Multiplicity 191
Lemma B.2.3. If H, L H, then ji,y = f1z + [y

Proof. For every g € G, using thatx L H,,y L H,,
(z 4y, Uz +y)) = (z,U%z) + (y, U%)
:>/ng#£+3;_/ng(:“$+”?¥> VQE G

and the claim follows. [ |

Definition B.2.1. We say that x € H is of maximal type for the unitary representation UY if for
every y € H, py << flg.

Remark B.2.2.

1. If z,y are of maximal type, then p, ~ p,. It follows that class of the spectral measures of
maximal type is well defined: this is called the maximal spectral type of the representation.

2. Consider the decomposition given in proposition B.2.2. By Bessel inequality, z = | m;vn €
‘H, and by lemma B.2.3,

1

n

Now forany y € H,y = >, Yn,Yn € H,, and since j,,, << pi,, it follows that p, << fi.
Hence z is of maximal type; in particular, the spectral type of UY is non-trivial.

We can make the following refinement of proposition B.2.2.

Theorem B.2.4. There exists a orthogonal decomposition H = P
and such that ji,, >> p,,,,Vn € F.

In fact, the decomposition can be chosen such that x; if of maximal type and p,, = 1g, i, where
E, D E,41 is a decreasing sequence of Borel subsets of G* and p1 = fi,.

ner Ma, With F finite or countable,

Proof. We proceed as in proposition B.2.2. Fix (e,),>; orthonormal basis of # and take z; of
maximal type, E; = G*. If H,, = H there is nothing to prove: otherwise consider # = H,UY =
U9H, and let

e ng=min{n>1:e, ¢ H,, }
e ycHsuchthate, - e, € Hyy @ Hy.

It is no loss of generality to assume that y is of maximal type for U9. Let h = f%, and choose

FE, a Borel set ;- a.e. equivalent to 2h7'(0,+00). Then 1, € £*(u,) and 1g,p ~ p,, hence by
lemma B.2.1, there exists z, € £*(u,) such that y,, = 1g,pu,, and furthermore z, is also of
maximal type for U9, hence H,, = #H,. If H,, = H we are done: otherwise we keep going. W
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192 The Spectral Theorem for Unitary Representations B.3

B.3 The case of single unitary operator

For convenience of the reader, here we’ll write explicitly the Spectral Theorem and its conse-
quences for the case when we have a single U € U(H), i.e. when the representation is of the
formn7:n— U, necZ.

Theorem B.3.1. Let U € U(H),x € H. Then there exists a unique i, € M(S') non negative such
that

fiz(n) = (U"z,x) ¥n € Z.
Moreover, there exists ® : H, — £%(u,) isometric isomorphism satisfying

L pallrv = ll=(l3

2. ® conjugates the actions B(U, H,) ~ H, and {My : ¢ € Co(supp(iz))} ~ L%(u.). Therefore,
for every ¢ € C(supp(piz)),

(2, 6(U)z) = / 600) dpa (x)

where ¢(U) = ® o Myo d~ 1.
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APPENDIX C

Distance between processes

We remind the reader definition 7.3.3 of dynamical process (7',P). Observe that if P is not a
generator, then we obtain a factor of the map 7" (chapter 9) therefore it is not a loss of generality
to consider only dynamical processes associated with generators. There is a technicality here: the
existence of a generator for the factor is not obvious, but it is true due to a theorem of Krieger.
In this part it will be convenient to assume that all spaces involved are regular (Lebesgue).

Convention. We will omit the explicit reference to zero sets. In particular, we say that two
processes (T, P), (S, Q) are conjugate if they are conjugate mod 0. This will be denoted as (T',P) ~
(5,Q).

By corollary 7.3.3, (T, P), (S, Q) are conjugate if and only if they induce they same measure in
their natural presentation. Note that in this case necessarily #P = #Q.

In this part we are interested in comparing different processes, and for this we will define
some adequate distances. We start comparing different partitions.

Assume that P, Q are partitions of spaces (M, u), (N, v) with the same number of atoms, which
we consider to to be ordered. If P = { P, - - - |, P} we define its distribution as the vector

d(P) = (u(Pr), -, u(Pr)),

and similarly for Q. There are at least two natural distances between P and Q.

e The distribution metric:

k
|d(P) — d(Q)] = Z (i) — v(Qi)].

e If (M, 1) = (N, v) we can consider the partition metric

k
P—Ql= ZN(R‘AQ@)-
=1

Clearly |d(P) — d(Q)| < [P —Q|.
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194 Distance between processes

Remark C.0.1. We have

k
Pool= [ Y Itn - to]du
i=1
and 2% | [1p, — 1g,| = ¢pq where

2 Q(z) =P(x)
Pralr) = {0 otherwise.

Thus |P — Q| measures (twice) the average number of points that have the same name in both P, Q.

If P, Q are partitions of different spaces we can use the fact that Lebesgue spaces are isomorphic
to compare them'®. Let L be a Lebesgue space and suppose that ¢ : M — L.¢p : N — L are
isomorphisms. Then

dg.4(P,Q) == [p(P) — ¥(Q)].

More generally, if {P;}! ;,{Q;}}, are sequences of partitions of the same number (%) of atoms in
M, N respectively, then

Too({PH Q) = & D [0(Pa) — v(@)]

In fact for us the important type of sequences of partitions are of the form {P;}!", =
{TP} ,{Q:}, = {SQ}",. Observe the following: let » : N — M isomorphism and take
¢=T"",¢=noS"" Then
dy.s({Ps}imr, {Qi Hiy) = dran({TTPHI {nS 71 Q5.

If now we define S = nSn~! : M — M and Q = +Q then (S, Q) is a process in M and
de,an_iP}?:_ol» {nS_iQ}?:_ol) = JId,Id({T_iP}?z_&» {S_iﬁ}?z_ol)

Sometimes in the literature the definition between sequences of processes appears in this form.

Remark C.0.2. If dg({P;}7, {Q;},) = O then the processes (T, P), (S, Q) assign the same mea-
sure to words of lenght n in their natural presentation.

Consider (7', P), (S, Q) processes with the same number of atoms and n € N.,: denote

CZ((Tv P)? (Sv Q), n) = g}i dtﬁ,w({Pi}?:lv {Ql}?:l)

Definition C.0.1. The Ornstein d distance between (T, P), (S, Q) is

d((T,P),(8,Q)) = Sup d((T,P),(8,Q),n).

Let us show that d is in fact a distance.

This is consequence from theorem 9.1.8.
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Lemma C.0.1.

d((T,P),(S,Q)) = limd ((T,P), (S,Q),n).

Proof. Denote a,, = d ((T,P),(S,Q),n) and compute for all m > 1,

s = int L (S OT) —0(80)] | S 1P v )
o M n n
n (m—Dn(mip) __ (m—1)n(qipn.
Tl T (Ee) = yS SRy
n
and the claim follows. [ |

Proposition C.0.2. d is a distance in the set of classes of conjugacy classes between processes.

Proof. Since d(-,-,n) is a pseudo-metric for every n, the same is true for the limit. Now if
d((T,P),(S,Q)) = 0, then for every n it holds

inf TP —¢S7Q| =0
inf 2; ¢ ¥STa|
and this by remark C.0.2 implies that both processes induce the same distribution in their natural

presentation, and therefore are isomorphic. [ |

Here is a central theorem related to this notion.

Theorem C.0.3 (Ornstein). Suppose that {(T,,,P,)}5°, are Bernoulli shifts such that

limd (T}, P,), (T,P)) = 0.

n

Then (T,P) is a Bernoulli shift.
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