Goal: To evaluate integrals of the form $\int \sin^m x \cos^n x \, dx$.

1.
$$\int \sin x \, \cos^4 x \, dx$$

2.
$$\int \sin^3 x \, dx$$
 (Hint: Use the identity $\sin^2 x + \cos^2 x = 1$, then do a u-substitution.)

3.
$$\int \sin^5 x \, \cos^2 x \, dx \qquad (Hint: write \, \sin^5 x = (\sin^2 x)^2 \sin x.)$$

4. Use the same strategy as the previous problem. (The algebra gets hairy, so stop once you do the substitution.)

$$\int \sin^7 x \, \cos^4 x \, dx$$

5. Describe your strategy to evaluate any integral of the form $\int \sin^m x \cos^n x \, dx$ where m is odd.

6. The same type of trick works if the power on $\cos x$ is odd. What trig identity and u-sub would you use to evaluate the following integral?

$$\int \sin^2 x \cos^3 x \, dx$$

7. Describe your strategy to evaluate any integral of the form $\int \sin^m x \cos^n x \, dx$ where n is odd.

If you don't have an odd power of $\sin x$ or $\cos x$, the previous strategies don't work.

- 8. Evaluate $\int \sin^2 x \, dx$ using the following strategies.
 - (a) Use the identity $\sin^2 x = \frac{1}{2} (1 \cos(2x))$.

(b) Integrate by parts using $u = \sin x$ and $dv = \sin x dx$.

(c) Use a trig identity to show that your answers from part (a) and (b) are the same!

9. How would you integrate $\int \cos^2 x \, dx$? What about $\int \cos^4 x \, dx$ or $\int \sin^2 x \, \cos^2 x \, dx$?