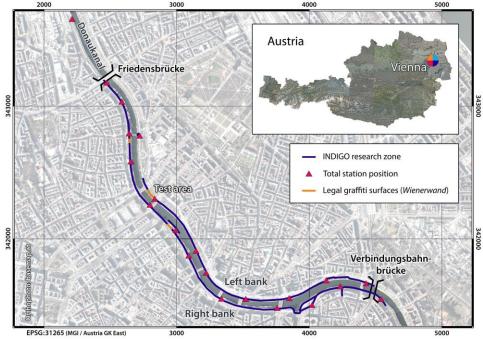
Exterior Orientation in a Box Cost-Effective RTK/IMU-Based Photo Geotagging

M. Wieser ¹, G. Verhoeven ², B. Wild ¹, N. Pfeifer ¹ martin.wieser@geo.tuwien.ac.at, geert.verhoeven@univie.ac.at

- ¹ Department of Geodesy and Geoinformation TU Wien
- ² Department of Prehistoric and Historical Archaeology University of Vienna

Low-Cost 3D, 12.11.2024


Project INDIGO

IN-ventory and DI-sseminate G-raffiti along the d-O-naukanal

~13km of structures with graffiti 2x total coverage image survey On average 4000/month additional images to track changes.

Built from Sparkfun & Adafruit open-source components. Libraries are provided for all sensors dealing with communication and settings

Built from **Sparkfun & Adafruit open-source components.**Libraries are provided for all sensors dealing with communication and settings

Built from **Sparkfun & Adafruit open-source components.**Libraries are provided for all sensors dealing with communication and settings

Ublox ZED-F9P (GNSS receiver)
multi-constellation
multi-band
RTK

Sparkfun Board:
PPS signal
communication port

Built from **Sparkfun & Adafruit open-source components.** Libraries are provided for all sensors dealing with communication and settings

Ublox ZED-F9P (GNSS receiver)

multi-constellation multi-band RTK

Sparkfun Board:

PPS signal communication port

3-axis 14bit accelerometer

3-axis close-loop 16bit gyroscope

3-axis geomagnetic sensor

Adafruit Board:

communication port

Built from **Sparkfun & Adafruit open-source components.**Libraries are provided for all sensors dealing with communication and settings

Ublox ZED-F9P (GNSS receiver)

multi-constellation multi-band RTK

Sparkfun Board:

PPS signal communication port

ESP32-S2 WROOM

Xtensa® Single-Core 32-bit (up to 240MHz)
Built-in WIFI

Sparkfun Board:

USB-C also for battery charging GPIOs, Communication Ports

Bosch BNO055 (IMU - 9 DoF)

3-axis 14bit accelerometer

3-axis close-loop 16bit gyroscope

3-axis geomagnetic sensor

Adafruit Board:

communication port

Time-critical synchronisator

- time frame via GNSS using PPS and Ublox-protocol
- time stamp camera sync signal

Time-critical synchronisator

- time frame via GNSS using PPS and Ublox-protocol
- time stamp camera sync signal

Exterior ORI. processor

- communication with GNSS receiver and the IMU
- IMU calibration

Time-critical synchronisator

- time frame via GNSS using PPS and Ublox-protocol
- time stamp camera sync signal

NTRIP processor

- communication with NTRIP server via RTCM protocol
- forwards correction data to GNSS receiver

Exterior ORI. processor

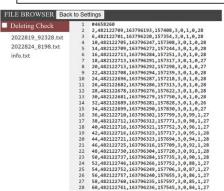
- communication with GNSS receiver and the IMU
- IMU calibration

Time-critical synchronisator

- time frame via GNSS using PPS and Ublox-protocol
- time stamp camera sync signal

NTRIP processor

- communication with NTRIP server via RTCM protocol
- forwards correction data to GNSS receiver



Exterior ORI. processor

- communication with GNSS receiver and the IMU
- IMU calibration

User interface

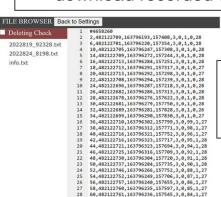
- using WIFI connection
- configure WIFI & RTK
- download recorded data

Time-critical synchronisator

- time frame via GNSS using PPS and Ublox-protocol
- time stamp camera sync signal

NTRIP processor

- communication with NTRIP server via RTCM protocol
- forwards correction data to GNSS receiver



Exterior ORI. processor

- communication with GNSS receiver and the IMU
- IMU calibration

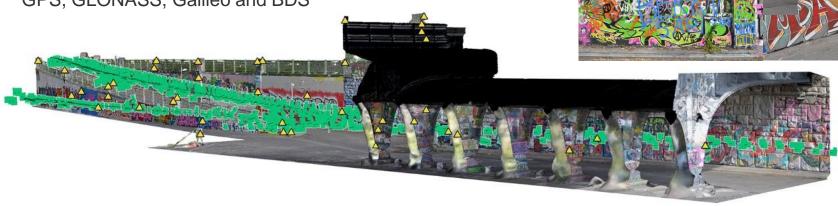
User interface

- using WIFI connection
- configure WIFI & RTK
- download recorded data

Visual feedback

- status LEDs
- display

Data Acquisition


Date: 12th October 2022

Camera: Nikon Z7 II (45 MP) Lens: Nikkor Z 20mm f/1.8

Imagery: 777 highly overlapping images in different camera orientations.

GCP: 41 coded targets measured by total station

RTK: VRS mode using EPOSA (Echtzeit-Positionierung-Austria, Eng. Real-time positioning Austria) with a mounting point that uses GPS, GLONASS, Galileo and BDS

Post-Processing

Reference Data

41 Coded targets:

4 stations using Leica TS16 Control Points from city of Vienna Std. Dev. Residuals: XY 9 mm, Z 4mm

Bundle block:

40k interest points / 4k tie points Targets indicated 1085 times Self-calibration of IOR

Georeferencing accuracy metric	Value
RMSE _X	5.3 mm
RMSE _y	4.0 mm
RMSE _{xy} (total planimetric accuracy)	6.6 mm
RMSE _z	5.8 mm
RMSE _{xyz} (total 3D positional accuracy)	8.8 mm

Post-Processing

Reference Data

41 Coded targets:

4 stations using Leica TS16 Control Points from city of Vienna Std. Dev. Residuals: XY 9 mm, Z 4mm

Bundle block:

40k interest points / 4k tie points Targets indicated 1085 times Self-calibration of IOR

Georeferencing accuracy metric	Value
RMSE _x	5.3 mm
RMSE _y	4.0 mm
RMSE _{xy} (total planimetric accuracy)	6.6 mm
RMSE _z	5.8 mm
RMSE _{xyz} (total 3D positional accuracy)	8.8 mm

RTK/IMU Device

Synchronise images with log file:

- Equal nr. direct assignment
- Unequal nr. correlation of images(camera time) and log signals (GNSS time). Happens rarely

System ETRF2000

X,Y,Z

 H_{ell}, Φ, λ

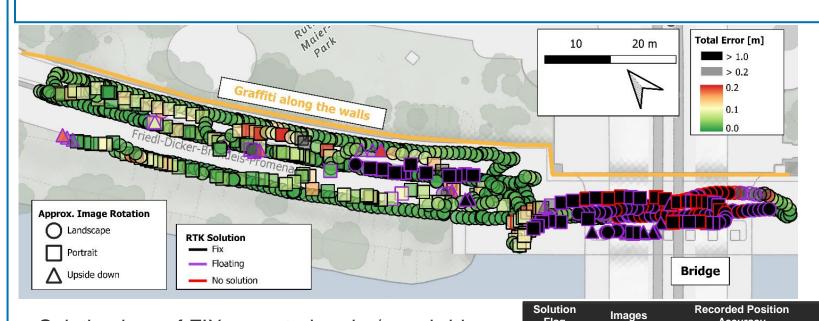
EPSG:9499 Height Grid

Coordinate transformations:

- ZED-F9P cannot use correction data(parameter, NTv2 grids)
- Sufficient coordinate transformations are not possible on main processor.

Rotation transformation:

Quaternions logged from IMU


Transform to Device's CRS (X forward, Z up)

Corrections: Magnetic declination and grid convergence

Post processing software to perform all necessary operations.

RTK Solution Status – Classification

Solution loss of FIX expected under/near bridge.

Non expected solution loss in open area:

Mon expected solution loss in open area.	Fix	598	0.01 m - 0.03 m	0.02 m - 0.53 m
 shadowing from User 				
 non-zenith pointing antenna 	Class	Images	Recorded Position Accuracy	Total Error to Reference Block
1 9				
(elec. characteristics of helical antenna)	1 st order quality	586	0.01 m	0.02 – 0.46 m only 14 >15 cm
U GEO universität	All others	191	0.01 m – 1.00 m	0.05 m – 21.00 m
(GEO) GEO GEO GEORGE				

Total Error to

Reference Block

0.33 m - 13.00 m

0.05 m - 21.00 m

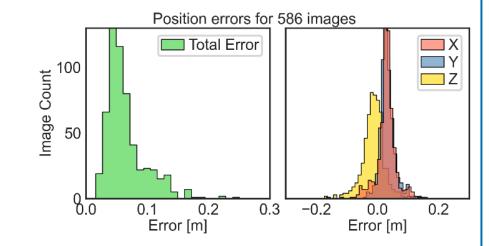
Accuracy

0.12 m - 1.00 m

0.01 m - 1.00 m

Flag

No Solution

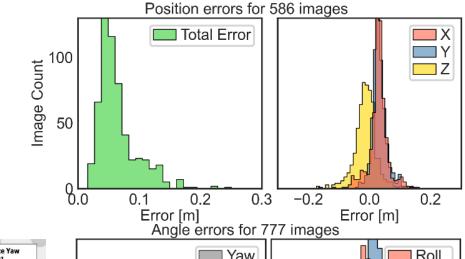

Floating

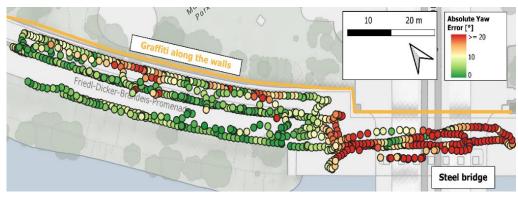
46

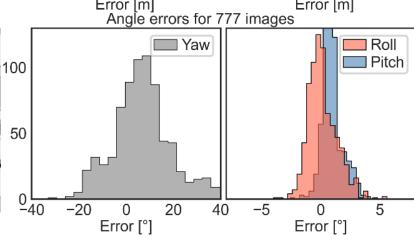
133

Exterior Orientation vs. Reference Block

Error	X [cm]	Y [cm]	Z [cm]	Total [cm]	Roll [°]	Pitch [°]	Yaw [°]
Mean	2.9	2.8	-1.9	6.5	0.17	0.73	2.93
Median	3.0	2.5	-1.8	5.4	0.01	0.59	1.79
St. Dev.	3.1	2.7	4.4	3.9	1.22	0.81	15.3
RMSE	4.3	3.9	4.8	7.6	1.23	1.09	15.6

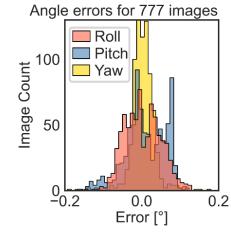


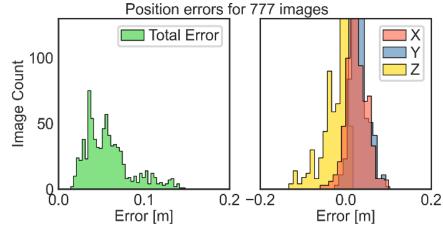




Exterior Orientation vs. Reference Block

Error	X [cm]	Y [cm]	Z [cm]	Total [cm]	Roll [°]	Pitch [°]	Yaw [°]
Mean	2.9	2.8	-1.9	6.5	0.17	0.73	2.93
Median	3.0	2.5	-1.8	5.4	0.01	0.59	1.79
St. Dev.	3.1	2.7	4.4	3.9	1.22	0.81	15.3
RMSE	4.3	3.9	4.8	7.6	1.23	1.09	15.6




Bundle Block Adjustment with RTK-GNSS Positions

- First order GNSS positions are used as block constraints
- No additional reference data
- Camera Calibration on the job
- Antenna Mounting calibration

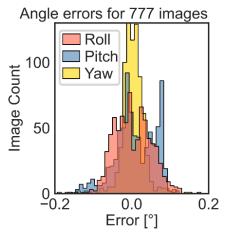
No post adjustment/filtering applied

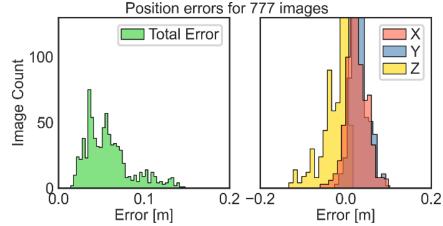
Error	Х	Y	Z	Total	Roll	Pitch	Yaw
EIIOI		[cm]		[cm]	[m	illidegree]	
Mean	2.4	2.9	-2.9	5.8	3	0	5
Median	2.3	2.6	-1.6	5.3	3	0	4
St. Dev.	2.4	1.9	3.0	2.7	47	67	35
RMSE	3.4	3.5	4.2	6.4	47	67	35

Bundle Block Adjustment with RTK-GNSS Positions

- First order GNSS positions are used as block constraints
- No additional reference data
- Camera Calibration on the job
- Antenna Mounting calibration

No post adjustment/filtering applied

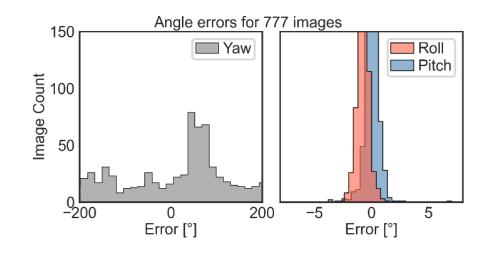

Бинан	Х	Υ	Z	Total	Roll	Pitch	Yaw
Error		[cm]		[cm]	[m	illidegre	e]
Mean	2.4	2.9	-2.9	5.8	3	0	5
Median	2.3	2.6	-1.6	5.3	3	0	4
St. Dev.	2.4	1.9	3.0	2.7	47	67	35
RMSE	3.4	3.5	4.2	6.4	47	67	35


Accuracy on the object

Targets: Reference to Estimated RMSE of differences:

Total: 31 cm

X: 2.5 cm, Y: 8.5 cm, Z: 4.0 cm



Nikon Angles

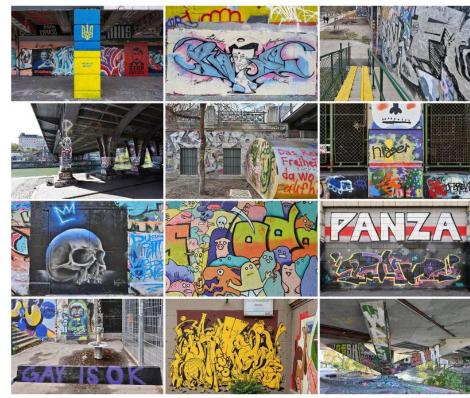
IMU of modern cameras store angles in manufacturer-specific Exif Makernote tags

Needed manipulation depending on the rotation of the camera (Exif Orientation tag, ID 274). Did not find any rotation notation that would have solved that.

Error [°]	Mean	Median	St.dev	RMSE	Min	Max
Roll	-0.7	-0.7	0.5	0.9	-2.8	1.2
Pitch	-0.2	-0.1	0.7	0.7	-3.8	6.5
Yaw	-15.6	-33.5	123.5	124.5	-259.6	350.5

Discussion

Position up to an accuracy of ~6 cm with a **precision of ~3 cm**. Complete EXT. ORI. suffers from magnetometer disturbances.


INDIGO's incremental SfM workflow:

Positions can be used to estimate a temporary bundle block to constrain object space to search for existing features of older images

Low cost: Late 2022 the total cost of the components and the 3D printed case was about € 500

Identified disadvantages:

- additional mass on long duration sessions
- camera does not provide sync signal in silent mode or when using interval priority

