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Abstract
Diagrams play a fundamental role in mathematics education, serv-
ing both as essential components of mathematical problems and as
powerful scaffolding tools to support student comprehension.While
AI tools have shown promise in supporting teachers with lesson
preparation, especially with text-based mathematical content, they
still struggle with reliably generating visual diagrams. Our work
makes two main contributions: (1) We introduce MathemaTikZ,
a dataset derived from the Illustrative Mathematics curriculum,
comprising 3,793 mathematical diagrams paired with their natural
language descriptions, problem contexts, and TikZ implementations.
These span the full range of diagrams utilized in the K12 math cur-
riculum. (2) We conduct comprehensive baseline evaluations using
state-of-the-art language models (GPT-4o, Claude 3.5 Sonnet, and
Gemini 2.0 Flash) to assess current capabilities in mathematical dia-
gram generation. Our findings reveal that even the best-performing
models achieve a 73.9% success rate in accurately generating math-
ematical diagrams, with performance varying significantly across
different types of visualizations.Through detailed error analysis, we
identify four key challenge areas that future work should address:
spatial reasoning and element placement, adherence to geometric
constraints, pedagogical knowledge of mathematical diagrams, and
preservation of mathematical relationships. Our results establish
baselines for mathematical diagram generation and highlight crit-
ical areas for improvement in making AI tools more effective for
mathematics education.

CCS Concepts
• Social and professional topics→ K-12 education; • Human-
centered computing→ Visualization systems and tools.
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1 Introduction
The challenge of automated diagram generation is particularly acute
in the context of curriculum adaptation and customization. While
Large Language Models (LLMs) have shown promise in generating
text-based mathematical content and practice problems [17], their
capability to generate accurate and pedagogically sound visual aids
remains relatively unexplored. This gap is particularly significant
for the customization of high-quality curriculum materials like
Illustrative Mathematics, where visual representations are integral
to problems, explanations, and student scaffolding.

Recent work has explored various approaches to mathematical
diagram generation, from using domain-specific languages [25] to
multi-agent architectures [16]. However, there has been no sys-
tematic evaluation of how different factors—such as description
quality, syntax guidance, and model architecture—affect diagram
generation accuracy. Understanding these relationships is crucial
for developing effective educational tools and identifying key areas
for improvement.

Our work makes two main contributions. First, we introduce
MathemaTikZ, a dataset of 3,793 mathematical diagrams
derived from the Illustrative Mathematics (IM) curriculum, paired
with their natural language descriptions, problem contexts, and
TikZ implementations. This dataset spans the full range of diagrams
utilized in K-12 mathematics education, providing a comprehensive
resource for developing and evaluating mathematical visualization
systems. The dataset is available to researchers on request by filling
in the form at bit.ly/mathematikz.

Second, we present a systematic evaluation of mathematical
diagram generation across six experimental conditions, testing
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three state-of-the-art language models (GPT-4o, Claude 3.5 Son-
net, and Gemini 2.0 Flash). We examine how performance varies
with different quality levels of diagram descriptions (from basic
alt-text to human enhanced descriptions) and with the addition
of TikZ syntax guidance. Our findings reveal that even in opti-
mal conditions–using human enhanced descriptions and syntax
primers–the best-performing models achieve a 73.9% success rate
in generating mathematically accurate diagrams. Through detailed
error analysis, we identify four key challenges: spatial reasoning
and element placement, adherence to geometric constraints, peda-
gogical knowledge of mathematical diagrams, and preservation of
mathematical relationships.

2 Related Work
2.1 AI for Curriculum Customization and

Scaffolding
High-Quality Instructional Materials (HQIM) have demonstrated
the potential to yield learning gains in mathematics when imple-
mented effectively [1, 12]. However, some studies show that actual
improvements from HQIM adoption at the district-level are often
modest [4, 5]. One explanation for this discrepancy is that teachers
frequently do not implement the materials with fidelity, for reasons
including a lack of alignment to local contexts and the presence
of substantial numbers of students performing below grade level
[4]. In these situations, teachers may need to adapt or supplement
high-quality curricula to meet diverse student needs while still
maintaining curricular coherence and integrity [17].

LLMs present an opportunity to address these adaptation chal-
lenges. Rather than discarding the structure or rigor of HQIM,
LLM-based systems can preserve core pedagogical design while
creating additional scaffolds that target specific learner gaps. For in-
stance, Malik et al. [17] investigated whether LLMs could generate
“warm-up” exercises to bridge students’ prior knowledge deficits
and support grade-level content. Their framework decomposed the
teacher’s scaffolding role into three stages—observing students’
needs, formulating a strategy, and implementing that strategy with
concrete tasks. With access to curriculum materials and an “expert
prompt,” the model produced warm-ups rated highly by educators
for alignment with instructional objectives and for accessibility for
students working below grade level.

Student-facing applications are also emerging. Sun et al. [23]
describe ScaffoldiaMyMaths, which integrates AI-driven scaffolding
into an existing elementary math platform. The system provides
real-time, context-specific prompts (e.g., fraction strips, step-by-
step hints) based on a live analysis of students’ interactions with
problems. Preliminary evidence suggests this personalized support
can boost both engagement and comprehension, much like a human
tutor but at classroom scale.

2.2 Diagrams in Math Education
A key gap in the effectiveness of AI-driven curriculum-related ap-
plications has been the inability to generate math diagrams [21].
Diagrams play a critical role in mathematics education, both as
essential components of mathematical problems and as powerful
scaffolding tools to support student comprehension [6, 22].They are
used as conceptual frameworks to support student thinking, such

as number lines to support arithmetic [10] and fractions [2], tape
diagrams for proportional reasoning [19], and balance diagrams
to understand equivalence [24]. Diagrams have been shown to be
effective when they conceptually align with the math problem [11].
The effectiveness of diagrams to support student math achievement
varies for students of different attitudes and achievement [8], un-
derscoring the importance of adapting mathematics instruction and
diagram use to individual student needs.

2.3 Automated Diagram Generation
Several approaches have been used to generate accurate mathemat-
ical diagrams. Early text-to-image models made rapid progress in
producing photorealistic images from prompts [20], yet struggled
with the structured layouts and exact labeling required for math-
ematical and scientific diagrams [27]. For instance, conventional
diffusion-based models often fail to maintain specific geometric
constraints, annotate complex relationships, or reproduce text ac-
curately, a critical shortfall in education contexts where factual
correctness supersedes aesthetics (e.g., geometry proofs, physics
flowcharts) [7, 28].

Pre-LLM approaches explored specialized frameworks, includ-
ing domain-specific languages (DSLs), to create structured envi-
ronments for minimizing model generation errors. Ye et al. [25]
introduced Penrose, which uses constraint-based specification to
automatically optimize diagram layouts from high-level mathe-
matical statements, enabling diverse visual representations (e.g.,
Euclidean vs. hyperbolic) from the same content.

With the rise of LLMs, research has shifted to code generation
based on evidence that these models also benefit from clearly de-
fined syntax and structure when generating diagrams. Jain et al.
[13] show that LLMs can learn to generate diagrams using DSL
based on the Penrose framework when provided with few-shot
examples. Likewise, Belouadi et al. [3] introduced DaTikZ and the
broader AutomaTikZ framework, which focus on generating TikZ
code from textual descriptions. Their dataset of 120k paired exam-
ples (code plus captions) enabled fine-tuning LLMs specifically for
vector-graphics creation. By leveraging these DSLs, the models
achieved significantly higher fidelity than generic text-to-image
models like DALL-E or Stable Diffusion, especially for scientific or
mathematical content.

Recent multi-stage pipelines further illustrate LLM-based dia-
gramming strategies. SciDoc2Diagrammer-MAF [18] refines Graphviz
or TikZ code iteratively based on long scientific texts, reducing
hallucinations common in direct text-to-image models. Diagram-
merGPT [26] employs an LLM-based “planner–auditor” loop to
outline diagram structure, followed by a diffusion renderer. The
LLM enforces semantic correctness (e.g., arrow connections, proper
labeling), resulting in diagrams that are more accurate and visu-
ally coherent than naive diffusion models can achieve. Lee et al.
[15] use LLMs for SVG generation and evaluation for mathematical
diagrams and hints, such as those used by applications like Khan
Academy and IXL learning.

An important open question in LLM mathematical diagram gen-
eration and evaluation is whether LLMs are able to understand,
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evaluate, and properly generate spatial and mathematical informa-
tion. Currently, evidence suggests that language models have trou-
ble understanding mathematical diagrams and geometric reasoning
[14, 27], motivating the need to better understand and address these
challenges.

Across these efforts, vector-based approaches remain the most
effective at controlling geometry and labels precisely. This is central
to educational scenarios where a slight positional or labeling error
can yield incorrect meaning for students. Open challenges include
ensuring total fidelity in multi-step or highly specialized diagrams
(e.g., circuit schematics, intricate 3D geometry), enabling real-time
interactive generation, and developing standardized benchmarks
for diverse visualization tasks. Despite these methodological ad-
vances in diagram generation, work is still limited on generating
pedagogically-sound diagrams for use in K-12 mathematics educa-
tion, further motivating our work.

3 MathemaTikZ Dataset
3.1 Data Source
Our dataset, MathemaTikZ, is derived from IllustrativeMathematics
(IM), a comprehensive problem-based core curriculum that serves
over four million K-12 students across the US. The IM curriculum
is open-source and available online. The curriculum is particularly
known for its emphasis on visual representations, incorporating di-
verse types of mathematical diagrams that support student learning
through carefully designed sequences of activities. The curriculum
received the highest possible ratings from EdReports [9] across all
evaluation dimensions, including focus, coherence, rigor, and usabil-
ity, which makes it an ideal source for high-quality mathematical
visualizations.

Each lesson in the IM curriculum includes various diagrams that
serve multiple pedagogical purposes: supporting concept introduc-
tion, demonstrating problem-solving approaches, and providing
opportunities for student practice. These visuals are particularly
crucial in supporting diverse learners, including multilingual stu-
dents and students with disabilities, through careful attention to
accessibility and multiple representations of mathematical concepts.

3.2 Data Processing
IM shared an original dataset of 32,007 rows containing diagrams
used across the curriculum. We filtered this dataset to include only
images that are associated with valid images in the current student
materials of the curriculum. This filtering approach ensures all im-
ages refer to complete, final images rather than drafts, and preserves
the important contextual information needed for understanding
each diagram. After this initial filtering, our dataset was reduced to
3,793 unique mathematical diagrams.

Each entry in MathemaTikZ includes:

• Unique identifiers (lesson-id, task-id)
• Contextual information (context) containing the original
problem statement that the image appears in

• Image descriptions (original-description,
revised-description)

• Technical implementation (tikz-code)
• Visual content (image-url)

One challenge in preparing the dataset was the insufficient detail
in many of the original image descriptions. To address this issue,
we generated enhanced descriptions by providing a language model
with both the original description and the TikZ code, instructing it
to create more comprehensive and mathematically precise descrip-
tions. Henceforth, we often refer to the original description as IM
alt-text and the revised description as revised alt-text for brevity.

3.3 Dataset Characteristics
Each diagram in MathemaTikZ is represented by both its visual
form and its TikZ code implementation, allowing for programmatic
analysis and modification. Analysis of component lengths revealed
significant variation across the dataset. TikZ code segments aver-
aged 778.20 characters (Median: 628.00, SD: 685.95), ranging from
119 to 11,028 characters. Context information was substantially
longer at 2,480.40 characters on average (Median: 2,010.00). IM alt-
texts were notably brief, averaging just 73.21 characters (Median:
58.00), while our revised alt-texts were significantly more detailed
at 461.08 characters on average (Median: 447.00).

An interesting aspect of our dataset is the presence of custom
TikZ functions developed specifically for the IM curriculum.These
custom functions include code to create number lines, hanger dia-
grams, division representations, and various geometric shapes and
manipulatives. We estimate that approximately 9% of the diagrams
in the dataset utilize these specialized commands.

The diagrams span a wide range of mathematical concepts and
visualization types. To systematically categorize these diagrams,
we first generated embeddings of the diagram descriptions using
TF-IDF vectorization and applied hierarchical clustering to identify
natural groupings. Manual inspection of these clusters revealed
recurring patterns of mathematical visualization types, which we
used to develop a comprehensive categorization schema. We then
used regular expressions and pattern matching to estimate the
distribution of diagrams across these categories, as shown in Table 1.

Figures 1, 2 and 3 illustrate a range of the provided diagrams
with their associated alt-text.

Figure 1: IM alt-text: A tape diagram. Four white sections,
labeled 100 percent. With a smaller blue section labeled 25
percent that extends past the 100 percent.

4 Modeling and Evaluation
4.1 Experimental Conditions
Initial exploration with diagram generation revealed two primary
challenges. First, some descriptions from IM lacked sufficient detail
for accurate diagram recreation. For instance, an alt-text might state,
“A number line” but omit crucial features such as scale markings
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Table 1: Distribution of Mathematical Diagram Types

Category Diagram Types

Geometric Constructions (60.4%) Basic shapes (triangles, rectangles, circles), complex shapes (polygons,
irregular shapes), properties (congruence, similarity), transformations
(reflections, rotations), symmetry

Measurement & Analysis (52.7%) Angles (acute, obtuse, complementary), lines and segments (paral-
lel, perpendicular, intersecting), line segments and rays, distance and
length measurements

Coordinate Systems & Functions (52.2%) Coordinate planes, grids and graph paper, function graphs (linear,
quadratic, exponential), graph transformations

Number Sense & Operations (41.9%) Number lines, fraction models, place value representations, operation
models (multiplication/division, addition/subtraction, integer opera-
tions)

Algebra & Expressions (26.3%) Equations, expressions, variables, inequalities, substitution models,
algebraic relationships

Data & Statistical Representations (23.7%) Distribution plots (histograms, box plots), relationship plots (scatter
plots, line graphs), categorical data (bar graphs, pie charts), statistical
measures visualizations

Mathematical Models (21.1%) Measurement tools (rulers, protractors, clocks), visual models (tape
diagrams, ten frames, number bonds, area models, arrays), problem-
solving diagrams (hanger diagrams, bar models, pattern blocks)

Spatial & 3D Geometry (14.0%) 3D shapes (cubes, cylinders, spheres), cross-sections and projections,
nets and unfolded views, volume and surface area models

Note: The distribution of these categories are based on our analysis of 3,793 diagrams. Of these, 89.8% (3,405) were classified into multiple categories, with an average
of 3.00 categories per diagram. Only 0.7% (27) diagrams could not be categorized. The percentages sum to more than 100% as diagrams could be assigned to multiple
categories.

Figure 2: IM alt-text: Balanced hanger diagram, left side, rec-
tangle 14, right side, circle x, square 3, circle x, square 3.

or directional arrows. Second, even when models received detailed
descriptions, they often produced non-compiling TikZ code due
to syntax errors (e.g., missing packages, incorrect environment

Figure 3: IM alt-text: Three cubes of different sizes: first cube
has side length 3, second cube side length 5, and third cube
has side length 9 and 1/2.

usage). To systematically address these challenges, we designed six
experimental conditions:

(1) IM Alt-Text Only: Using the original IM alt-text without
additional guidance.

(2) IM Alt-Text + TikZ Primer: Augmenting the IM alt-text
with a TikZ syntax guide (henceforth, TikZ primer) to miti-
gate syntax errors when compiling. The guide includes ex-
amples of (1) necessary LaTeX packages or libraries and
(2) drawing basic shapes with labeled edges/vertices/angles.
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The code and a visualization of the guide is included in the
supplement.1

(3) LLM-Generated Alt-Text Only: Generating alt-text via
an automated LLM-based pipeline, incorporating the prob-
lem statement and alt-text provided by IM. The LLM was
prompted to describe geometric relationships, measurements,
and spatial configurations with mathematical precision. Our
prompt can be found in the supplement.2

(4) LLM-Generated Alt-Text + TikZ Primer: Supplementing
the LLM-generated alt-text with the TikZ primer.

(5) Human-Enhanced Alt-Text Only: Three authors inde-
pendently reviewed and refined the LLM-generated alt-text
against the original IM image and problem statement through
a structured evaluation process. Each evaluator first assessed
the alt-text independently using a standardized rubric fo-
cusing on three key aspects: (1) mathematical accuracy of
relationships and constraints, (2) completeness of geometric
descriptions, and (3) correctness of numerical labels and an-
notations. Discrepancies between evaluators were resolved
through consensus meetings, where differences were dis-
cussed and reconciled to produce a final, validated version of
the LLM-generated alt-text. This human enhancement was
only applied to the test set (see below).

(6) Human-Enhanced Alt-Text + TikZ Primer: Combining
the consensus-validated alt-text with the TikZ primer.

All six experimental conditions were evaluated across three state-
of-the-art LLMs: GPT-4o, Claude 3.5 Sonnet, and Gemini 2.0 Flash,
selected to represent different training paradigms in the commercial
LLM landscape (i.e., different approaches to model architecture,
training data selection, and instruction-tuning strategies that shape
how each model processes and generates text).

4.2 Evaluation Process
4.2.1 Test Set Construction. We constructed our test set through
a stratified sampling of the Illustrative Mathematics Grade 7 cur-
riculum. We selected grade 7 as our focus due to its comprehensive
coverage of units spanning geometry, statistics, and algebra, which
necessitates a diverse array of diagram types. We selected six dia-
grams from each of the nine units in Grade 7, resulting in an initial
sample of 54. We then excluded diagrams not originally created
with TikZ (e.g., real-world images like maps or photographs), yield-
ing a final test set of 50 programmatically generated diagrams. This
approach ensured that we sampled both a variety of mathematical
concepts and diverse visualization types, while maintaining the
focus on TikZ-based figures.

4.2.2 Scoring Methodology. For each diagram in the test set, we
generated TikZ code under all six conditions with each of the three
LLMs, yielding 18 total outputs per diagram. The resultant 900
diagrams (50 diagrams × 18 condition-model combinations) were
then shuffled and anonymized — meaning, the evaluators did not
know which model or condition produced each output.

Each output was independently scored by three evaluators based
on whether it faithfully conveyed the same mathematical informa-
tion as the original IM diagram. Specifically, each evaluator asked:
1OSF Supplement: TikZ Primer Code and Visualization
2OSF Supplement: Prompt to Generate AI Image Description Alt-Texts

“Does this generated diagram preserve the critical math-
ematical details (e.g., numeric values, geometric con-
straints, distribution patterns) present in the reference
diagram?”

If minor stylistic variations (e.g., label placement, minor color
differences) did not impact the mathematical integrity of the dia-
gram, the evaluator still deemed it acceptable, as shown in Figure 4.
Conversely, outputs that omitted key elements, misrepresented pro-
portions, or failed to compile into a viewable figure were marked as
unsuccessful. The evaluators conducted their assessments indepen-
dently, then resolved any discrepancies through discussion. Final
scores were assigned by consensus.

(a) IM Benchmark (b) GPT-4o

Figure 4: Example of an acceptable stylistic variation. While
the generated diagram (b) shows overlapping circles com-
pared to the benchmark (a), the core mathematical prop-
erties—the relative sizes of the five circles and their mea-
surability for diameter and circumference comparison—are
preserved.

5 Results and Analysis
5.1 Overall Performance
Table 2 presents the comprehensive performance metrics across
all experimental conditions. The results demonstrate that both the
quality of image descriptions and the inclusion of the TikZ primer
impacted the models’ ability to generate mathematically accurate
diagrams.

The compilation rates were generally high across all conditions
and models, ranging between 80-96%. The TikZ primer, and en-
hancements to the image description generally improved
compilation rates. However, compilation is a low bar compared
to the success rate—our key metric.

Claude 3.5 Sonnet achieved our highest success rate of 73.9% us-
ing only the human-enhanced alt-text, followed by GPT-4o (71.7%)
and Gemini (60.5%) with the human-enhanced alt-text and TikZ
primer. The quality of the alt-text had a substantial impact on
models’ success rates. The success rate increased substantially
from approximately 12-15% with original IM alt-text to 24-27%
with LLM-generated descriptions, and further improved to 58-74%
with human-enhanced descriptions across all models. This finding
demonstrates the crucial role of precise and detailed image descrip-
tions, as illustrated in Figure 5. In this example, the original IM
description failed to specify that 𝑎 should be larger than 2, resulting
in equal-sized bars. The human-enhanced description explicitly de-
fined this inequality, enabling models to generate a mathematically
accurate representation.
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Table 2: Model Performance Across Experimental Conditions

GPT-4o Claude 3.5 Sonnet Gemini 2.0 Flash

Compile (%) Success (%) Compile (%) Success (%) Compile (%) Success (%)

IM Original Alt-Text 84.0 11.9 80.0 15.0 80.0 12.5
+ TikZ Primer 86.0 14.0 84.0 21.4 82.0 12.2

LLM-Generated Alt-Text 92.0 26.1 88.0 27.3 82.0 24.4
+ TikZ Primer 96.0 27.1 90.0 26.7 80.0 17.5

Human-Enhanced Alt-Text 92.0 63.0 92.0 73.9 92.0 58.7
+ TikZ Primer 92.0 71.7 86.0 65.1 86.0 60.5

(a) IM Benchmark (b) IM Alt-Text (c) Human Alt-Text

Figure 5: Impact of description quality on mathematical ac-
curacy in a tape diagram (unit 6).The original description did
not specify the relationship between 𝑎 and 2, leading to an
incorrect visual implication that 𝑎 = 2. The human-enhanced
description explicitly defined this relationship, resulting in
correct proportions.

(a) IM Benchmark (b) No Primer (c) With Primer

Figure 6: Impact of the TikZ primer on geometric accuracy
with the human-enhanced alt-text. The L-shaped hexagon
(unit 1), generated by Gemini 2.0, shows marked improve-
ment with the primer. While additional vertex labels were
added, they do not compromise the mathematical integrity
of the diagram.

With the TikZ primer, 5 out of 9 cases show increased success
rates, but apart from those instances with IM alt-texts, these im-
provements are relatively small. The TikZ primer’s impact on the
compile and success rate is particularly evident in complex geomet-
ric figures, as shown in Figure 6. When provided with the primer,
models demonstrated improved ability to handle intricate shapes
while maintaining mathematical accuracy.

GPT-4o, Claude 3.5, and Gemini 2.0 were able to generate high-
quality diagrams that retained mathematical accuracy across
all diagram types and units in the IM curriculum. To further
illustrate the models’ capabilities across different mathematical
concepts, Figure 7, Figure 8, Figure 9, Figure 10, Figure 11, Figure 12,

(a) IM Benchmark (b) Claude 3.5

Figure 7: The problem statement (unit 1) asks students to
measure angles and work with quadrilaterals. Claude’s dia-
gram maintains mathematical accuracy throughout all the
labels, but without the TikZ primer, is unable to draw angle
arcs.

Figure 13, Figure 14 present a series of LLM-generated diagrams
alongside their IM benchmark counterparts, all produced under
the highest-performing experimental conditions (human enhanced
alt-texts and TikZ primers for some examples).

(a) IM Benchmark (b) Claude 3.5

Figure 8: The problem statement (unit 2) compares the slopes
of the two lines. Claude’s diagram includes all the correct
labels, and intentionally does not include any units on the
axes or grid-lines because of the description.

5.2 Performance by Diagram Type
Following the 9 units in IM’s curriculum for Grade 7, Table 3 shows
the compilation and success rate for each unit.

Performance varied considerably across different IM units repre-
senting different categories of mathematical diagrams, as shown in
Table 3. Units 2 and 5 had 100% compile rate, consisting of Carte-
sian plots, graphs, number lines, and a discrete units diagram for
ratios. Units 5 and 4 had the highest success rates, consisting of
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(a) IM Benchmark (b) GPT-4o

Figure 9:The problem statement (unit 3) compares the area of
the circle to square when the radius equals the square’s side
length. OpenAI’s visual maintains mathematical accuracy,
while also being more visually appealing.

(a) IM Benchmark (b) GPT-4o

Figure 10: The problem statement (unit 4) compares price to
percentages on a double number line. OpenAI’s diagram per-
fectly matches the benchmark and also maintains consistent
significant figures.

(a) IM Benchmark (b) Gemini 2.0

Figure 11: The problem statement (unit 5) uses a number line
to explore the start and end position of a sea animal. Gemini’s
diagram perfectly matches the benchmark.

(a) IM Benchmark (b) AI Alt-Text (c) Human Alt-Text

Figure 12: The problem statement (unit 7) asks students to
identify complementary and supplementary angles. The AI
alt-text hallucinated angle values and the configuration of
each shape. (b) and (c) were generated by Claude 3.5.

single/double number lines, tape diagrams, and graphs. Units 7 and
1 had the lowest success rates, consisting of complex 2D and 3D
geometric shapes, often including labels and angles.

5.3 Error Analysis
To complement our quantitative findings, we conducted a prelimi-
nary qualitative case study of the errors we observed. While not
exhaustive, this analysis highlights recurring patterns that could
inform future work. Our observations revealed four primary cate-
gories of errors that persisted across models and conditions:

5.3.1 Spatial Reasoning and Element Placement. Models frequently
struggled with the precise placement of elements within diagrams.
In Figure 15, while the models generated correct sizes and shapes,

(a) IM Benchmark (b) Claude 3.5

Figure 13: The problem statement (unit 8) explores mean vs
median using a box plot. Claude’s diagram is mathematically
accurate and incredibly well formatted.

(a) IM Benchmark (b) Gemini 2.0

Figure 14: The problem statement (unit 9) compares data
across two dot plots. Gemini’s diagram maintains two dot
plots with accurate data points presented. There is a slight
formatting overlap with title of the top dot plot, but that does
not detract from the mathematical accuracy.

Table 3: Results Across Units for Human-Enhanced Alt-Text

Illustrative Mathematics G7 Units Compile (%) Success (%)

1: Scale Drawings 80.0 50.0

2: Proportional Relationships 100.0 77.8

3: Measuring Circles 94.4 64.7

4: Proportional Relationships and Percentages 86.7 84.6

5: Rational Number Arithmetic 100.0 90.0

6: Expressions, Equations, Inequalities 88.9 56.3

7: Angles, Triangles, Prisms 94.4 38.2

8: Probability and Sampling 86.1 54.8

9: Putting it All Together 76.7 78.3

these shapes were sometimes placed off of the coordinate plane or
overlapped with each other. Scale drawings had the third lowest
success rate with human-enhanced alt-texts at 50.0% (Table 3).

5.3.2 Adherence to Geometric Constraints. A second major cate-
gory of errors involved violations of fundamental geometric con-
straints. Figure 16 demonstrates a case where the angles 35∘, ℎ∘,
and the vertical angle for 𝑔∘ were meant to be supplementary, but
failed to maintain the 180-degree sum relationship, and the rela-
tionship between 𝑔∘ and its vertical angle, rendering the diagram
mathematically incorrect despite its superficial visual similarity to
the target. These diagrams were generated with human-enhanced
alt-texts and no TikZ primer.

In 3D diagrams, there are many examples of incomplete or not
well-formed 3D shapes, such as Figure 17a. Angles, Triangles, and
Prisms had the lowest success rate for human-enhanced alt-text at
38.2% (Table 3).
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(a) Gemini 2.0, no primer (b) GPT-4o, with primer

Figure 15: When drawing diagrams, models often struggled
to place objects accurately. In both of these examples, shapes
were placed off the grid and overlapping with each other.

(a) IM Benchmark (b) GPT 4o (c) Gemini 2.0

Figure 16:While the generated diagrams (b) and (c) have some
visual similarity to the (a) IM Benchmark, they do not adhere
to geometric constraints. Both examples do not represent 35∘,
ℎ∘, and the vertical angle of 𝑔∘ as supplementary (adding up
to 180∘, or 𝑔∘’s relationship with its vertical angle.

(a) Gemini 2.0 (b) GPT-4o

Figure 17: 3D shapes were challenging for multiple reasons.
(a) is an example of how models would generate incomplete
or poorly formed 3D shapes. (b) is an example of how even
though the diagram is well-formed, it misses critical mathe-
matical information important to the question (specifically
that it should include a right triangle face). These diagrams
were generated with human-enhanced alt-texts and TikZ
primer.

5.3.3 Knowledge of Mathematical Diagrams. Models generally had
trouble generating several specific diagram types, such as hanger
diagrams. In the hanger diagrams in Figure 18, only one condition
led to an accurately drawn hanger diagram (𝑧, 𝑧, and 2.2 vertically

hung, which conveys that the hanger is balanced), while other con-
ditions typically hung objects separately or were not well-formed.
The models seemed to have limited knowledge about what hanger
diagrams were and how to draw them, and required explicit instruc-
tions from the human-enhanced alt-text. Expressions, Equations,
and Inequalities, that utilize balanced hanger diagrams, had the
fourth lowest success rate for human-enhanced alt-text at 56.3%
(Table 3).

(a) GPT-4o (b) Claude 3.5

Figure 18: All models struggled with hanger diagrams. Only
one condition succeeded (a), while others displayed objects
horizontally like in (b), whichwould actually not be balanced,
or were not well-formed at all. It seemed like the models did
not know what a hanger diagram was.

5.3.4 Preservation of Mathematical Information and Relationships.
The third category of errors involved failure to preserve crucial
mathematical information and relationships. In the 3D shape Figure
17, while it does generate a square pyramid, it does not clearly
contain a right triangle face that is required from the corresponding
math problem.

The tape diagram in Figure 19 is a particularly nuanced example,
where the Illustrative Mathematics diagram is complex, contain-
ing many proportional relationships essential to the mathematical
concept being illustrated. For example, the total length of the top
tape diagram 𝐶 should be longer than 𝑍. Cells with the same label
should be the same size. 𝑥 should be different from 𝑦. While all of
the diagrams get very close, only 19b captures all of these distinc-
tions. 19c has 𝑥 and 𝑦 the same size, and in 19d 𝑍 is longer than 𝐶.
This behavior is interesting given that the human-enhanced alt-text
for this diagram included all of these mathematical details.

6 Discussion
Our experimental results demonstrate both the significant poten-
tial and current limitations of using Large Language Models for
generating mathematical diagrams. The most striking finding is the
dramatic impact of high-quality image descriptions. When provided
with human-enhanced alt-text, models performed substantially bet-
ter than with original descriptions, revealing two key insights:
first, that the specific language and structure of these descriptions
critically impact model performance; and second, that current state-
of-the-art models can achieve high success rates when provided
with precise, mathematically complete descriptions.

The impact of the TikZ syntax primer varied across models and
conditions. While it generally improved compilation rates, its effect
on mathematical accuracy was model-dependent.This suggests that
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(a) IM Benchmark (b) Gemini 2.0

(c) Claude 3.5 (d) GPT-4o

Figure 19: Models had trouble maintaining complex math-
ematical relationships. Here, only (b) maintains the mathe-
matical distinctions from (a) that are important for solving
the problem: that the 𝐶 tape diagram is longer than the 𝑍
one, that 𝑥 and 𝑦 are of different lengths. In (c) 𝑥 and 𝑦 are the
same length, while in (d) 𝐶 is shorter than 𝑍.

the relationship between technical syntax guidance and mathemat-
ical accuracy might be more complex than initially anticipated and
may depend on model-specific characteristics.

Our analysis revealed several persistent failure modes that war-
rant further investigation. These include difficulties with spatial
placement, inadequate understanding of specific diagram types’
pedagogical requirements, challenges in maintaining consistency
across related diagrams, and limitations in implementing complex
geometric constraints. These failures point to fundamental chal-
lenges in the current approach of using LLMs to generate mathe-
matical diagrams from natural language descriptions.

These findings have significant implications for both research
and practice. For researchers, our results suggest that improving
mathematical diagram generation may require specialized archi-
tectures that can better handle spatial relationships and geometric
constraints, rather than relying solely on enhanced prompting or
syntax guidance. For practitioners, while current systems show
promise in supporting certain types of diagram generation, their
limitations underscore the continued importance of human over-
sight in educational content creation.

6.1 Limitations and Future Work
Our study has several key limitations that point to promising direc-
tions for future research. First, while human-enhanced descriptions
significantly improved performance, creating these enhanced de-
scriptions manually is not scalable for the full dataset of 3,793
diagrams. Future work should explore automated methods for im-
proving description quality while maintaining mathematical preci-
sion, such as specialized models trained on mathematical language
or hybrid approaches combining automated enhancement with
efficient human validation.

Second, our evaluation focused only on two binary metrics: com-
pilation and success rates, the latter of which relied on manual
review. A more fine-grained evaluation scheme could quantify the
key failure modes we identified, as well as alignment with user (i.e.
teacher and student) preferences. Such a scheme could facilitate
targeted model improvements by helping researchers evaluate and
address specific model errors. Further, developing automated dia-
gram evaluations, by extending [14, 27], is critical to enhancing the
utility of our dataset as a benchmark. LLM evaluators could take
the problem context and description into account when assessing
the relevance and accuracy of diagrams.

Third, our current benchmark focuses on English language de-
scriptions. Given the universal nature of mathematical diagrams
and their importance in global education, investigating multilin-
gual diagram generation capabilities would be valuable for broader
accessibility. Additionally, while Grade 7 provides a rich variety of
mathematical diagrams, our findings may not generalize to other
grade levels which may feature different types of diagrams.

We see particular promise in better leveraging specialized func-
tions and prior examples. Many mathematical diagrams, such as
hanger diagrams or number lines, follow standardized formats
with specific constraints. The IM curriculum already includes some
custom TikZ functions for these common diagram types, and ex-
panding this library of specialized functions, coupled with clear
usage guidance, could significantly improve generation accuracy.

For particularly challenging cases, such as 3D shapes, we hy-
pothesize that few-shot learning approaches or reinforcement fine-
tuning could be valuable strategies. We also envision potential
benefits from developing self-reviewing agents that can iteratively
generate, critique, and refine diagrams [18], as well as interactive
systems that could guide users through the diagram specification
process through targeted questions. However, this approach is cur-
rently limited due to the challenges state-of-the-art LLMs face in
understanding and making use of visual information [27], limiting
the ability to perform reliable evaluation and quality assurance on
mathematical diagrams.

7 Conclusion
This work makes two primary contributions. First, we introduce
MathemaTikZ, a comprehensive dataset of mathematical diagrams
drawn from the Illustrative Mathematics curriculum, each paired
with natural language descriptions and TikZ implementations. This
dataset provides a benchmark for evaluating and developing math-
ematical diagram generation systems, spanning the full range of
visualizations used in K-12 mathematics education.

Second, our systematic evaluation of state-of-the-art language
models reveals both the significant potential and current limitations
of LLM-powered diagram generation. While models can achieve
high success rates under optimal conditions, performance varies
significantly across diagram types and conditions. Our analysis
identifies four key challenges that must be addressed for reliable
deployment in educational contexts: spatial reasoning and element
placement, adherence to geometric constraints, prevention of math-
ematical value hallucination, and preservation of mathematical
relationships.
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Looking ahead, MathemaTikZ provides a foundation for devel-
oping more sophisticated approaches to mathematical diagram gen-
eration. The dataset offers several valuable use cases for researchers
and practitioners. For AI researchers, it serves as a challenging
benchmark for evaluating spatial reasoning capabilities in language
models. For educational technologists, it can facilitate the develop-
ment of automated tools that assist teachers in customizing cur-
riculum materials with appropriate visual supports. For curriculum
developers, it offers a structured way to analyze and categorize the
visual representations that appear throughout K-12 mathematics
education.

Beyond evaluation, MathemaTikZ can support fine-tuning spe-
cialized models for diagram generation, training systems to convert
between different representation formats (e.g., from natural lan-
guage to TikZ code), and creating interactive educational applica-
tions that dynamically generate tailored visualizations based on stu-
dent needs. The paired nature of the dataset—connecting mathemat-
ical problem contexts, descriptions, and implementations—makes
it particularly valuable for developing systems that understand the
pedagogical intent behind different diagram types.

Our baseline evaluations establish clear metrics for measuring
progress in this domain, while our error analysis highlights specific
technical challenges that must be addressed. Success in overcoming
these challenges could significantly affect how educational content
is created and customized, ultimately supporting more effective
and accessible mathematics education at scale.
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