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Abstract

Powered by the increasing predictive capabilities of machine learning algorithms,
artificial intelligence (AI) systems have the potential to overrule human mistakes in
many settings. We provide the first field evidence that the use of AI oversight can
impact human decision-making. We investigate one of the highest visibility settings
where AI oversight has occurred: Hawk-Eye review of umpires in top tennis tourna-
ments. We find that umpires lowered their overall mistake rate after the introduction
of Hawk-Eye review, but also that umpires increased the rate at which they called
balls in, producing a shift from making Type II errors (calling a ball out when in) to
Type I errors (calling a ball in when out). We structurally estimate the psychological
costs of being overruled by AI using a model of attention-constrained umpires, and
our results suggest that because of these costs, umpires cared 37% more about Type
II errors under AI oversight.
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1 Introduction

In the coming years, firms will have the option to use Artificial intelligence (AI) systems
to correct worker mistakes across a wide array of settings. This is due to the confluence
of two forces. First, machine learning algorithms are becoming increasingly good at predic-
tion. Some examples of machine learning algorithms eclipsing experts include bail judges
predicting pretrial misconduct (Kleinberg, Lakkaraju, Leskovec, Ludwig, and Mullainathan
2018), radiologists predicting pneumonia from chest X-rays (Rajpurkar, Irvin, Zhu, Yang,
Mehta, Duan, et al. 2017; Topol 2019), and workforce professionals predicting productivity
for hiring and promotion (Chalfin, Danieli, Hillis, Jelveh, Luca, Jens, et al. 2016). Second,
there has been a big drop in the cost of monitoring worker behavior, brought about by the
rise in digitization.1

For a concrete example of the potential for AI oversight, consider Zalando, a leading
e-commerce company specializing in fashion retail. Zalando allows category managers to
suggest discounts based on their private information about fashion trends. Huelden, Jas-
cisens, Roemheld, and Werner (2024) show that while human interventions appear promising,
the negative impact of poor interventions (stemming from overconfidence and other biases)
offsets the benefits of good interventions (based on private information). However, they
show that using algorithmic tools to predict and block undesirable human interventions has
the potential to recoup these gains. In fact, recent papers in the economics literature have
shown that there are large potential gains from using AI to overrule human mistakes in
other high-stakes settings, including law (e.g., Rambachan 2024) and medicine (e.g., Raghu,
Blumer, Corrado, Kleinberg, Obermeyer, and Mullainathan 2019).

Using AI to overrule human errors appears to be a straightforward improvement for
societal welfare. However, assessing the full impact of AI oversight requires understanding
whether its presence alters human decision-making. While a large amount of research has
focused on how humans respond when assisted by AI (e.g., Hoffman, Kahn, and D. Li
2018, Grimon and Mills 2022, L. Raymond 2024), very little is known about how humans
respond when their decisions might be overruled by AI. Because being overruled can carry
psychological costs (e.g., shame and embarrassment of being overruled) and psychological
benefits (e.g., relief at having their mistakes fixed), individuals might alter their decision-
making under AI oversight.2

To the best of our knowledge, we provide the first field evidence that AI oversight can
influence human decision-making. Specifically, we analyze one of the most prominent set-

1The strong impact of these complementary forces – digitization and AI – was demonstrated by L.
Raymond (2024) in the real estate market.

2This illustrates how insights from behavioral economics can play a key role in understanding AI-human
interactions (Camerer 2019).
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tings where AI oversight has been implemented: umpiring at top tennis tournaments. The
prospect of AI oversight was introduced in top tennis tournaments through an AI technol-
ogy known as Hawk-Eye. Given the very small distances involved, camera imaging alone
is not sufficient for determining if a ball lands in or out of bounds, so Hawk-Eye leverages
state-of-the-art machine learning algorithms to use the path and spin of the ball to predict
if a ball landed in or out.3 Starting in 2006, players were given the option to challenge a line
call, and if the call contradicted the highly accurate predictions of Hawk-Eye, the umpire’s
decision was overturned, or in some cases, the point was replayed.

Our setting is a rare example where AI outperforms even the best humans, so the only
reasons humans continue to make line calls today are social, labor, and cost reasons. How-
ever, this unique feature is advantageous for studying the short-term impacts of AI oversight
because the strong performance of AI allows us to side-step common problems in studying
human and AI interaction: non-observability of counterfactual outcomes, uncertainty about
ground truth, and agents’ private information. Another advantage of this setting is that we
have Hawk-Eye data from the period immediately before the introduction of AI review, which
allows for a direct comparison before and after the introduction of AI review. This com-
parison is especially clean because many important factors stayed the same over the period
we study: there were no substantial changes to the training and performance assessments of
umpires, the pool of umpires, or the positioning and instructions to line judges.

We find that after the introduction of AI review, umpires lowered their overall mistake
rate by 8% (1.1 p.p.) for close calls (balls within 100 mm of the line). However, this aggregate
decrease masks two important sources of heterogeneity: the distance of the ball from the
line and whether the ball was in or out. For balls just outside of the line (within 20 mm),
the mistake rate actually increased by 34% (8.5 p.p.). This puzzling result is explained by a
behavioral response that occurs with AI oversight. We find that for the closest calls, umpires
increased the rate at which they called balls in by 12.6% (6.2 p.p.) after the introduction of
Hawk-Eye, which produced a shift from making Type II errors (calling a ball out when in)
to Type I errors (calling a ball in when out).

This behavioral reaction is a sensible outcome of the asymmetric psychological costs of
AI oversight in this setting. For umpires, improperly stopping a point (calling a ball out
when it was actually in) became a new cause of concern with the introduction of Hawk-Eye.
Even if a player successfully challenges such a call, there is no way to resume the point
where it stopped, so the rules dictate that the umpire must decide whether to replay the
point or award it to the challenger. Thus, Type II errors (calling a ball out when in) carry
two psychological costs: one from the impossibility of implementing the correct outcome
(continuing the point) and another from having to implement an arbitrary decision that, in

3For similar reasons, Hawk-Eye review is being considered for sports like American football, soccer, and
baseball, where camera imaging alone is insufficient to provide a definitive assessment often.
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many cases, unleashes the outrage of the players involved and the audience.4

Our reduced-form estimates suggest that the psychological costs of being overruled by
AI led umpires to shift the rate of Type I and II errors they made, but do not indicate the
magnitude of these psychological costs. To get a sense for this, we structurally estimate a
lower bound on the psychological costs of being overruled by AI using a model of attention-
constrained umpires. In this model, putting in more attention is effortful (cognitively costly)
but results in more accurate perception and predictions. The umpire trades off these cog-
nitive costs with the psychological costs of incorrect calls and being overruled by AI. The
umpire has two levers for achieving this balance, and we find supportive evidence of both
channels: the umpire can increase their attentional effort and vary the threshold belief at
which they call a ball in or out, shifting the fraction of Type I and Type II errors.

We employ a two-stage approach to estimate the parameters of this model. We first
use decisions before Hawk-Eye was introduced to recover the perceptual costs of making
correct calls, and we then use decisions after Hawk-Eye was introduced to determine the
psychological costs of being overruled by AI. The resulting estimates suggest that these
psychological costs lead umpires to care 37% more about Type II errors (calling a ball out
when in) after the introduction of Hawk-Eye review.

The rest of the paper proceeds as follows. In Section 1.1, we review related literature
on AI and human decision-making and social image concerns. In Section 2, we provide
additional details on tennis umpiring, Hawk-Eye review, and the data sources we leverage
in our analysis. In Section 3, we examine overall mistake rates, types of calls, and types
of errors. In Section 4, we provide a model of perceptually-constrained umpires and use it
to structurally estimate the psychological costs of AI oversight. In Section 5, we explore
additional sources of heterogeneity. Finally, we conclude with a brief discussion in Section
6.

1.1 Related Literature

While AI is increasingly good at prediction, humans are kept in the decision process (kept “in
the loop”) because of social reasons (tradition, comfort, fairness, etc.), due to labor market
concerns (union power, contractual responsibilities, inequality considerations, etc.), because
of the costs of implementing AI systems, and because humans can sometimes perform better
by incorporating additional information, understanding context, handling edge cases, and
adapting to changing circumstances. One form of joint AI and human decision-making that

4AI oversight could also lead to career concerns, and these would be asymmetric if ATP Tour organizers
punished referees for calls that induce replay decisions (despite their entertainment value). However, the
ATP Tour did not use Hawk-Eye to assess umpires during the period that we study.
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has been actively studied is when AI provides recommendations to human decision-makers.
Grimon and Mills (2022) show that Child Protective Services workers are able to reduce
child hospitalizations when provided with an algorithmic risk score. However, unexpectedly,
the gains did not seem to come from following the algorithmic predictions but rather from
reallocating their attention to different features of the allegations. L. Raymond (2024) finds
that the availability of algorithmic tools in the housing market generates responses from
non-adopter investors as well, shifting their focus to market sectors where human investors
have comparative advantages over algorithms. Cho (2023) uses a quasi-experimental sports
setting to examine how baseball umpires are affected when they work with AI assistance,
focusing on their skill development.5

Making decisions in environments with algorithmic recommendations elevates the need
for humans to exercise proper discretion, which can lower the effectiveness of these recom-
mendations. The findings from Hoffman, Kahn, and D. Li (2018) highlight challenges in
exercising discretion in hiring, as managers are observed overruling recommendations due
to personal biases rather than private information motives. Exploring how humans adopt
algorithmic recommendations, Agarwal, Moehring, Rajpurkar, and Salz (2023) find that
providing radiologists with access to AI predictions does not, on average, result in improved
performance. Another noteworthy finding from their study is that radiologists take sig-
nificantly more time to reach a decision when AI information is provided. Kreitmeir and
Raschky (2024) use a ban on ChatGPT in Italy to show that high-productivity programmers
have worse output in the presence of AI assistance.

Unlike these papers, we focus on settings where AI systems are used to overrule human
mistakes. One issue with these systems is that they effectively handle over final decision rights
to AI. In this regard, our study provides additional perspective to the debate surrounding
when formal decision-making authority should be given to humans versus AI (Athey, Bryan,
and Gans 2020).

Because giving AI final decision rights is potentially problematic, why would firms not
just give their workers AI recommendations? The results above highlight two potential
reasons why. First, humans can have difficulty exercising appropriate discretion when given
AI recommendations, either by taking AI recommendations when they should not or by
ignoring them when they should not. For example, AI guidance can be systematically
ignored due to overconfidence or adopted due to under-confidence (Caplin, Deming, S. Li,
Martin, Marx, Weidmann, et al. 2024). The second reason why firms might consider AI
oversight instead is because a final decision has to be made quickly, and incorporating AI
recommendations into decision-making can be time consuming.

5One potential advantage of our setting for studying human-AI interaction is that, like the baseball
setting, human line judges in tennis do not have any clear source of private information. We thank Ashesh
Rambachan for raising this point.
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With AI oversight, discretion, a prominent force in algorithmic recommendation systems,
no longer plays a major role. However, it introduces new behavioral forces into play, such
as shame, pride, embarrassment, and stress. Because of this connection, we contribute to
the literature on social image and peer effects (Bursztyn and Jensen 2017) by showing that
the cost of being corrected in public can overpower the potential incentive to free ride on
technology. Butera, Metcalfe, Morrison, and Taubinsky (2022) present a novel methodology
for measuring the welfare effects of shame and pride in various experimental scenarios. In
our work, we estimate a lower bound for the psychological costs of being overruled by AI, and
we feel that shame and embarrassment are likely components of these costs. An interesting
feature of our empirical context is that, with the introduction of AI oversight, one type of
mistake became more controversial and led to a larger backlash, including complaints from
players and fans. This introduced a change in the costs of different error types, which led
to a decrease in the number of controversial mistakes at the expense of an increase in the
number of less embarrassing ones. It is worth noting that Hawk-Eye decisions were available
for television broadcasts both before and after the introduction of AI review, so this aspect
of embarrassment does not change over the period we study.

We also add to the literature on monitoring, which has studied human reactions to
being monitored across various domains, including auditing and corruption (Olken 2007;
Bobonis, Cámara Fuertes, and Schwabe 2016), environmental policy compliance (Gray and
Shimshack 2011; Zou 2021), and workforce productivity (Gosnell, List, and Metcalfe 2020).
Nagin, Rebitzer, Sanders, and Taylor (2002) find that many call center workers behave as
in the “rational cheater” model, which predicts that shirking behavior will decrease when
monitoring increases. In line with this, we show that using AI systems to increase monitoring
can improve performance, even when introducing new incentives to shirk by free-riding on
AI corrections.

It is an open question as to whether humans respond differently to human and AI moni-
toring, thus we cannot assume that the behavior we observe in our study would be the same
if the umpires were monitored by humans. However, there are reasons to believe that these
forms of oversight might lead to differential responses. For example, Avery, Leibbrandt,
and Vecci (2023) provide field evidence that using AI recruitment review induces a response
from the supply side because women increase their application completion rates. From a
theoretical perspective, Iakovlev and Liang (2023) consider the differences between AI and
human evaluation, primarily the impact of context on humans, as AI evaluation is based
on fixed covariates. However, regardless of whether there is a behavioral difference between
AI and human oversight, AI technology extends the range of scenarios where monitoring
becomes operationally or economically feasible, as there are settings where AI monitoring is
less costly, quicker, or more effective than human monitoring. We consider our setting to be
one such case.

6



Lastly, we also contribute to the literature on attention and mistakes (see Caplin 2023 and
Maćkowiak, Matějka, and Wiederholt 2023 for reviews).6 We extend the canonical model
of rational inattention with costs that scale linearly with Shannon mutual information (e.g.,
Caplin and Dean 2013; Matějka and McKay 2015). This extension allows us to incorporate
two general features that we will later show fit well into our empirical setting. First, we
allow for asymmetric costs of attention for different states. Second, we include behavioral
factors in utility to accommodate the outcome of being overruled, which we will later refer
to as the AI oversight penalty. Bhattacharya and Howard (2022) find that the standard
rational inattention model explains the equilibrium behavior of professional baseball players,
and they estimate the linear cost of attention in this setting. Our rich data set, containing
tournaments from both periods (with and without oversight), allows us to estimate not only
the parameters associated with the cost of attention but also the state-dependent utility
loss incurred when being overruled by AI. This novel element is a central component of our
research question. Furthermore, our research introduces one of the first cognitive economic
models that incorporate the influence of behavioral factors on rational attention allocation.
Recent works by Bolte and C. Raymond (2023) and Almog and Martin (2024) suggest the
importance of expanding rational attention modeling to account for emotional states. Our
paper also adds to the literature on attention by considering the impact of AI tools on
attention, a connection suggested by the results of Grimon and Mills (2022).

2 Setting and Data

In March 2006, at the Nasdaq-100 Open in Key Biscayne (currently known as the Miami
Open), Hawk-Eye review was officially used for the first time at an ATP Tour event.7 Later
that year, many tennis tournaments that use non-clay surfaces, including the US Open,
adopted this new technology, allowing players to challenge calls.8 Hawk-Eye uses six to ten
computer-linked television cameras positioned around the court to collectively create a three-
dimensional representation of the ball’s trajectory. Hawk-Eye performs with an average error
of just 3.6 mm,9 so just like the ATP Tour we will consider Hawk-Eye readings to be the
ground truth.

6We acknowledge the ongoing debate regarding what to classify as a mistake (Nielsen and Rehbeck 2022).
Here, we refer to a mistake as a decision that is incorrect ex-post relative to an objectively correct answer.
It is fair to argue that tennis umpires are not making mistakes, as incorrect calls are just a result of the cost
structure of becoming informed.

7The ATP Tour is the top tennis tour organized by the Association of Tennis Professionals.
8Players have a fixed number of challenges that they can make per match, but successful challenges do

not count against this limit. Players were not allowed to challenge chair umpire decisions on non-clay courts
before this system was put in place.

9For perspective, the standard diameter of a tennis ball is 67 mm.
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We study the decision-making of tennis umpires before and after the introduction of
Hawk-Eye review in professional tennis, focusing on the umpire’s judgment about whether
a ball bounced in or out of bounds.10 This setting has several advantages for studying the
impact of AI oversight on individual decision-making. First, the use of Hawk-Eye review in
tennis was one of the pioneering uses of modern AI to conduct oversight in a work setting.
Second, it is a setting of economic significance: the global revenue for the ATP Tour was
147.3 million USD in 2022, and the global revenue of Hawk-Eye was 71.6 million Euros in the
12 months to the end of March 2023.11 Third, there was a testing period during which the
technology was used solely for broadcast and data recording purposes, without a challenge
system in place, allowing us to track umpire performance both before and after the formal
introduction of Hawk-Eye review in a tournament.12 Fourth, in this setting, there is an
objectively correct decision and a reliable measure of it, which allows us to identify human
mistakes. Finally, this setting offers the simplest possible decision-making problem, as the
task is simply to match a binary action (call in or out) to a binary state (ball bounces in or
out), which greatly simplifies our empirical and theoretical analysis.

2.1 Professional Tennis, Umpires, and Hawk-Eye

Professional tennis is a racket sport that is played either one-on-one (singles) or two-on-two
(doubles). In singles tennis, two players compete against each other on opposite sides of the
tennis court. The objective is to score points by hitting the ball “in” (within the bounds
of the opponent’s side of the court). We will concentrate solely on men’s singles matches
(singles matches where both players are men) because the analysis of other formats is under-
powered in our data.13 The scoring system for tennis is based on a series of points, games,
and sets. Players accumulate points to win a game and accumulate games to win a set.
Matches are typically played as the best of three or five sets, with each set requiring a player
to win at least six games.

A crew of up to ten umpires is involved in officiating a match. The roles typically include
10Our consolidated data set includes one tournament that was held without Hawk-Eye review after the

2006 Nasdaq-100 Open. However, this does not provide enough statistical power for running a difference-
in-difference analysis. Hence, we use the short-hand that there is a before and an after period of Hawk-Eye
review, even though this is strictly only true at the tournament level.

11Sources: https://www.breakingnews.ie/sport/revenues-at-hawk-eye-firm-increase-to-e71-6m-as-higher-
costs-hit-profits-1534936.html and https://www.zippia.com/atp-tour-careers-985960/revenue/.

12Our officiating source noted the following about the broadcast period: “Even though these replays are
not shown on the big screen, they inform the media and TV commentators, which can lead to widespread
comments about the umpire being wrong.” This suggests that we are likely underestimating the impact of
AI oversight on umpire decision-making.

13If more data was available on the other formats, it might be of interest to examine whether the impacts
of AI oversight vary by gender or team composition.
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one chair umpire who oversees the entire match, making decisions on points, penalties, and
overall match control. Additionally, there are usually nine line umpires positioned around
the court, each responsible for specific lines, with the sole duty to determine whether the ball
bounced in or out when it is relatively close to their respective line.14 The chair umpire has
the authority to overrule the decisions of the line umpires if necessary, so drawing inferences
on the performance of an individual umpire is complicated, especially since we do not have
data on whether the chair umpire overruled an individual line umpire. Thus, in this paper,
we evaluate the performance of the umpire crew as a whole. International chair umpires
are certified with Gold, Silver, or Bronze badges, while line umpires are graded according to
national or other systems. Certification and grading methods remained unchanged during
the study period, and Hawk-Eye metrics were not incorporated into these evaluations for the
first couple of years. A leading tennis official who was involved in testing and introducing
Hawk-Eye provided valuable institutional insights that will be used throughout the paper.

The Hawk-Eye review protocol works by endowing players with 2-3 challenges per set.15

If a challenge is successful, players do not lose a challenge opportunity. When a player
challenges a call, a computerized path and the final landing location of the ball are displayed
on a large screen in the stadium for the umpire, players, and the crowd to observe the
outcome of the challenge. The public nature of the challenge process adds excitement to
the spectator, but simultaneously adds pressure to the umpires, as their decisions are being
publicly scrutinized.

An important component of the review system implementation is the asymmetric resolu-
tion of incorrect calls, which varies depending on whether the challenged call was initially in
or out. If a ball is initially ruled in by the umpires and the challenge successfully overturns
the call, then the point ends with the challenger winning the point and the correct outcome
being enforced. However, when a ball is initially ruled out by the umpires, but the review
shows otherwise, enforcing the correct outcome is not always possible because the point was
unnecessarily stopped. In this case, the umpire has to make an arbitrary decision on whether
the opponent of the challenger had a real chance to return the ball. If the answer is yes, the
point has to be replayed from scratch. This situation can be perceived as detrimental due to
the inability to implement the correct outcome (continuing the point from where it stopped)
and because it forces umpires to make arbitrary decisions that, in multiple instances, have
been shown to infuriate one of the players involved.

14Figure B.1 provides a visual representation of the positioning of each umpire.
15In practice, players very rarely exhaust their challenges. This is advantageous for our research question,

as umpires are almost always under the threat of being challenged.
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2.2 Data

While this paper is not the first to utilize tennis data for drawing inferences on decision-
making, we have assembled a novel and rich data set that, for the first time, enables us to
comprehensively assess the performance of professional tennis umpires. To achieve this goal,
we utilized three distinct data sources. Our primary data set, the Hawk-Eye Base data set,
encompasses precise information on points and, crucially, the location of every bounce for
over 100 tournaments.16 Our second data set, the Challenge data set, tracks the outcomes
of challenges during a sample of tournaments that took place in the first few years following
the implementation of Hawk-Eye review in professional tennis. In the period of time where
challenges are used, the first data set only permits drawing conclusions on players’ behavior
because, when observing a correct call, it is not possible to disentangle whether the umpire
made the correct call initially or if a Hawk-Eye review corrected the umpire’s incorrect call.
In contrast, the second data set allows precise identification of incorrect calls, as every won
challenge is, by definition, an admission of the umpire’s mistake. Nonetheless, this second
data set is incomplete because it only includes points that players decided to challenge, and
this selection is susceptible to players’ perceptual and behavioral biases. Merging the first
two data sets was challenging due to systematic inconsistencies in the Challenge data set
(e.g., the score was often flipped across players and sometimes missing). To overcome this
limitation, we turned to a third data source: a manual review of points by replaying match
videos. This allowed us to identify the ground truth for challenges in a subset of matches,
enabling us to determine an effective approach for merging the first two data sets.17

The consolidated data set produced by merging the Hawk-Eye Base data set and the
Challenge data set comprises a total of 698 matches across 35 distinct tournaments, and
summary statistics for this data set can be found in Table 1.18 This data set includes 109
matches from seven tournaments that were played before Hawk-Eye review and 589 matches
from 28 tournaments after Hawk-Eye review was active. We were able to merge 2,038 out of
the 2,108 challenges registered for those 28 tournaments (a 97% merge rate). We will now
offer a more comprehensive description of the composition and role of each of the three data
sources.

16We excluded from the analysis the 15 clay court tournaments, we elaborate on this decision in the
Appendix A.1.

17The video auditing process was also instrumental in validating the best rules for determining when a
call was made incorrectly.

18Table B.1 provides information on the month, category, court type, and the number of matches for each
tournament.
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Before Hawk-Eye review After Hawk-Eye review
(PostHK=0) (PostHK=1) Total

A. Players 71 161 174

B. Tournament tier
ATP 250 2 12 14
ATP 500 0 3 3
ATP 1000 5 13 18
All 7 28 35

C. Matches
Final 7 27 34
Semifinal 14 53 67
Quarterfinal 19 88 107
Round of 16 14 113 127
Other 55 308 363
All 109 589 698

D.Points 15,439 83,898 99,337

E. Bounces (share)
< 20 mm from the line 556 (0.7%) 2,760 (0.6%) 3,316 (0.6%)
< 100 mm from the line 2,622 (3.6%) 14,190 (3.5%) 16,812 (3.5%)
Serves 20,942 (29.2%) 111,065 (27.6%) 132,009 (27.8%)
Non-serves 50,696 (70.8%) 291,381 (72.4%) 342,093 (72.2%)
All 71,638 (100%) 402,446 (100%) 474,102 (100%)

F. Average speed in km/h (s.d.)
Serves 147.7 (24.2) 150 (23.1) 149.6 (23.3)
Non-serves 81.7 (21.4) 83.3 (20.4) 83.1 (20.5)
All 101 (37.4) 101.7 (36.5) 101.6 (36.6)

Table 1: Summary statistics for the consolidated data set.
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2.2.1 Hawk-Eye Base Data Set

The main source of data for this paper is the Hawk-Eye Base data set, which consists of
the official Hawk-Eye data for matches played at the international professional level between
March 2005 and March 2009. This data set provides a number of pieces of information for
each point, including the position of every bounce captured by the Hawk-Eye system during
that point, the serving player, the ongoing score, and the point winner. Altogether, this data
set includes information on 1.8 million bounces from more than 1,800 men’s singles matches,
spanning various prestigious tournaments such as Grand Slam tournaments, Masters 1000
tournaments, and International series tournaments. This data set has been used in the past
to study important economics questions such as risk management (Ely, Gauriot, and Page
2017), tournament incentives (Gauriot and Page 2019), and mixed strategy play (Gauriot,
Page, and Wooders 2023). These papers have focused on the players’ perspective, and the
Hawk-Eye Base data set is well-suited for this purpose. However, this data set is insufficient
to analyze umpires’ performance, as it does not permit us to identify whether the final call
comes from the umpire or via an overturned challenge.

2.2.2 Challenge Data Set

The Challenge data set was originally obtained from the ATP Tour and encompasses all
challenges recorded during 35 tournaments across the initial three years following the in-
troduction of Hawk-Eye (2006-2008). It captures comprehensive information on 2,784 chal-
lenges, including details about the players involved, the match itself, the specific point in
the match when the challenge was made, and the outcome of each challenge. In order to
compile this data set, Abramitzky, Einav, Kolkowitz, and Mill (2012) undertook the ardu-
ous effort of collecting and compiling umpire match sheets. Abramitzky, Einav, Kolkowitz,
and Mill (2012) acknowledge the selection problem involved in only observing the challenged
points (around 2.6% of total points). Nevertheless, they are able to draw inferences on the
optimality of decision-making from the players’ standpoint by relying on the idea that a
higher propensity to challenge implies challenging less conservatively. However, without the
point-by-point data, it is hard to assess the umpire’s performance once Hawk-Eye review was
active. By merging the first two data sets, we solve the aforementioned selection problem
and gain information on what was originally called by the umpire crew.

2.2.3 Video Auditing

In order to assess the quality of our merging algorithm, we audited full-match video replays
using TennisTV, the official ATP streaming service. We identified 43 matches that appeared
in both the Hawk-Eye Base and Challenge data sets, providing us with an assessment of
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how well a given merging algorithm would work in the 144 challenges witnessed during these
matches.

Using variables such as match, point, distance, and who hit the ball, we developed
a merging algorithm with a 99.3% merge rate, for which only 4.9% of the video-audited
challenges were merged to an incorrect point. The algorithm consists of eight iterations,
starting with the most stringent merging rule and gradually relaxing criteria for challenges
that persist without merging.19

As an additional benefit, auditing match replays enabled us to test the effectiveness of
the four criteria we implemented to identify incorrect calls (two criteria for each type of
mistake). We deem an in call to be incorrect when a player’s stroke is recorded as bouncing
out in the Hawk-Eye Base data set, yet they still win the point, or if the data set records at
least three more strokes after an out bounce. We deem an out call to be incorrect if all the
strokes of a point are recorded as in, and the player delivering the final hit loses, or if there
is a second serve after the first one was recorded as in the Hawk-Eye Base data set.20

3 Empirical Results

In this section, we use our consolidated data set to study the impact of AI oversight on
umpiring decision-making in professional tennis.21 We begin by examining changes in the
overall mistake rate for all hits. We then highlight the influence of distance from the line
and whether a ball was in or out.

3.1 Overall Mistake Rate

Before Hawk-Eye review was introduced, the umpire mistake rate was only 0.61% of all ball
bounces. However, if we look at the 2,622 (3.6%) bounces that fell within 100 mm of the
line, the mistake rate jumps to 13.89%. Looking at the 556 (0.78%) bounces that fell within
20 mm of the line, the mistake rate jumps even more to 32.91%. Given our interest in the
impact of AI oversight on human mistakes, our primary focus will be on calls within 100 mm
or 20 mm of the line.22

19A detailed explanation of the merging algorithm is provided in Appendix A.2.
20Appendix A.3 documents these criteria further.
21Our officiating expert confirmed that the pool of umpires remained stable throughout the study period.

This eliminates the possibility that the estimated effects are due to changes in the umpire sample. Addition-
ally, suspensions and terminations are implemented solely for disciplinary reasons rather than performance,
which further alleviates this concern.

22We also find that over 93% of the challenges in our sample are for calls within 100 mm of the line.
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While the likelihood of a close call (a ball bouncing within 100 mm or 20 mm of the line)
did not change substantially after the introduction of Hawk-Eye and the probability of a
close call being in or out did not change substantially either,23 we find that the mistake rate
on close calls did change substantially. We estimate the effect of AI oversight on umpires’
performance using the following specification:

1(Incorrect Call)ipm = α0 + α1P ostHKm + βXp + γYm + ϵipm (1)

1(Incorrect Call) is an indicator variable equal to 1 if the call i made by the umpire
in point p in match m was incorrect. P ostHK is an indicator variable equal to 1 if the
match m belongs to a tournament with the Hawk-Eye review active. X is a vector of point
characteristics: distance fixed effects (by 20 mm bins), speed (whether it is below or above
the median), score, game, set and an indicator if the point played is in the tie-break stage.24

Y is a vector of match characteristics that has round and tournament tier.25

Our main coefficient of interest is α1, which can be interpreted with OLS regression as
the effect in percentage points of AI oversight on the probability that an umpire’s call is
incorrect. Table 2 reports the results of estimating this equation for calls within 100 mm of
the line. In our primary specification, the mistake rate is estimated to decrease by 8% (1.1
p.p.). This decrease in the mistake rate is consistent with a model of rational inattention
in which the psychological costs of being overruled by the AI outweigh any benefits, such as
attentional free-riding (see Section 4 for a model of this form).

One reason why the estimates of this specification might be noisy is that the impact
of Hawk-Eye might depend on two main features. First, an important component to call
difficulty is the distance from the line, so the ability to change attention enough to fix a
mistake might depend on the distance from the line. Second, it might matter which side of
the line the ball is on, and umpires might have different perceptions of the cost of Type I
and Type II errors after the introduction of Hawk-Eye review.

3.2 Shift in Type I and Type II Errors

Figure 1 illustrates the relationship between mistake rates and the distance to the line for
the 16,812 bounces within 100 mm of the line. In this figure, each dot represents the rate at

23See Table 1 for the likelihood of a close call. The probability that a ball was out when it bounced within
100 mm of the line was 45.3% before Hawk-Eye review and 46.8% after, and the corresponding numbers for
20 mm are 48.4% and 48.9%.

24A tie-break is a one-off game held to decide the winner of a set when two players are locked at 6-6.
25Given that the period without oversight has no 500-tier tournaments, we aggregate the 250 and 500

groups, so we basically control for whether the match is a Masters 1000 tournament or not.
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(1) (2) (3) (4)
Incorrect call

PostHK -0.014∗∗ -0.011 -0.011 -0.011
(0.007) (0.007) (0.007) (0.007)

Point controls X X X

Match controls X X

Cluster level Match
N 16,812 16,812 16,335 16,335

Baseline mean .139 .139 .136 .136
Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Table 2: OLS regressions of umpire mistakes for balls bouncing within 100 mm of the line.
PostHK = 1 if the Hawk-Eye review is active; point controls include distance fixed effects (by
20 mm bins), speed (whether it is below or above the median), score, game, set, and an indicator if
the point played is in the tie-break stage; and match controls include round and tournament tier.

which umpires made an incorrect call for all balls bouncing within one of ten 20 mm bins.
The five bins to the left of the dashed line correspond to balls that landed out of bounds,
while the five bins to the right side of that line represent balls that landed inside of the line.
For the rest of the paper, negative distances will be used to denote the distance to the line
for balls that bounced outside.

The blue dots in the figure were calculated using tournaments before the introduction
of Hawk-Eye review. The red dots represent tournaments with Hawk-Eye review. While it
is expected that umpires’ performance decreases as the ball gets closer to the line, we can
also observe that the red line lies mostly under the blue line (this holds true for eight of the
ten bins). This mirrors the results in Table 2, which shows that the overall performance of
umpires improves after the introduction of AI oversight, and in Table 6a, which shows that
this is particularly true for balls bouncing within 100 and 20 mm from the line. In addition, it
is noticeable that the only region of the court where the introduction of Hawk-Eye increased
the rate at which umpires make mistakes is the two closest bins on the outside of the line.

To further analyze this change in the type of errors made, we examine how the impact
of AI oversight on umpire performance varies with distance to the line. We re-estimate
equation 1, but now we interact PostHK with the indicator variables for each of the ten 20
mm distance bins into which the ball bounced. We report the estimated coefficients of these
interaction terms graphically in Figure 2. For each bin, we plot the estimated coefficient as a
dot and provide the respective 95% confidence interval around the estimated coefficient. The
red dashed line, which separates the in and out parts of the court, shows a sharp discontinuity.
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Figure 1: Incorrect call rates by proximity to the line. Each dot is the rate of incorrect calls for a
bin of 20 mm. Dots to the left of the dashed line represent bins out of bounds, and the right of the
dashed line represents bins in bounds.

The first bin to the left of the red dashed line (balls bouncing just out) exhibits the most
significant positive increase in incorrect calls, with an estimated coefficient of 8.6 percentage
points (significant at the 1% level). From that point onward, the coefficients gradually adjust
back down to the average treatment effect, just below zero. In the first two bins to the right of
the red dashed line (balls bouncing in), we observe the most substantial decrease in incorrect
calls, with estimated coefficients of -4.1 (significant at the 5% level) and -7.7 (significant at
the 1% level) percentage points. Similarly, as we continue to move to the next bins in that
direction, the estimated coefficients gradually increase to the average treatment effect level.
As highlighted by Goldsmith-Pinkham, Hull, and Kolesár (2024), our estimates from Figure
2 may suffer from “contamination bias” due to the regression of multiple treatments while
controlling for observables in an additively separable manner. To address this concern, we
implement one-treatment-at-a-time regressions, one of the suggested solutions by Goldsmith-
Pinkham, Hull, and Kolesár (2024). Figure B.2 shows that our original estimates do not suffer
from this type of bias.

We provide an event-study version of Figure 2 in Figure 3. This figure illustrates how the
impact of AI oversight on umpire performance progresses over time by separately examining
matches in the first half and second half of the period we study. The first group comprises
tournaments from 2006 and the first half of 2007, while the second group includes tourna-
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Figure 2: Impact of AI oversight on the incorrect call rate by proximity to the line. Each dot
represents the coefficient on the interaction between the distance bin and PostHK, the indicator
variable that equals 1 if the Hawk-Eye review system is active.

ments from the second half of 2007 and those from 2008. Figure 3 suggests that the shift in
umpires’ error types was not immediate, but instead took over a year to fully manifest. We
chose this division into two time sub-periods to yield a similar number of observations in both
groups, and the results are robust to breaking the tournaments into more time sub-periods,
though the effects become more noisily estimated.

Clearly, the key shift in errors occurs for the closest calls. What drives this shift? Figure
4 shows the tournament-specific rates at which umpires called a ball in when it bounced
within 20 mm of the line, regardless of which side it bounced. Each of the 28 dots represents
the rate at which balls were called in for a particular tournament that allowed AI review,
sorted by time. The first observation is that this rate increased from 42.8% to 49% with the
introduction of AI review. In 22 out of the 28 tournaments with AI review, umpires called
the ball in more frequently than the mean of 42.8% observed in tournaments without AI
review. Figure 4 suggests a gradual increase in the frequency of inside calls by umpires over
time, which may reflect their growing adaptation to the psychological forces introduced by
AI oversight.26 The slope coefficient for the regression in Figure 4 is 0.45 pp per month (p-

26The leading official we contacted, who played a key role in the deployment of Hawk-Eye in the ATP,
confirmed that umpires were not explicitly instructed to call more ’ins’ for close calls.
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Figure 3: Impact of AI oversight on the incorrect call rate by proximity to the line (by time sub-
period). Matches are grouped into those with Hawk-Eye review in all of 2006 and the first half
of 2007 and those with Hawk-Eye review in the second half of 2007 and all of 2008. Each dot
represents the coefficient on the interaction between the distance bin and PostHK, the indicator
variable that equals 1 if the Hawk-Eye review system is active.
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Figure 4: The rate of calling a ball in after the introduction to Hawk-Eye review for balls landing
<20 mm from the line, regardless of which side of the line they actually bounced on. Each dot
represents the rate of calling a ball in for a tournament. The red line is the best linear fit using the
dots as observations and weighting them based on the number of calls each tournament contributed.
The blue solid line represents the rate of calling a ball in for the seven tournaments that did not
have AI review (the blue dash lines indicate the 95 confidence interval).

value=0.11), an effect that would translate to over 5.4 pp in a year.27 Borrowing a common
instrument from cognitive science used to study imperfect perception and cognitive limita-
tions, we compare the psychometric curves across periods in Figure B.4. Both psychometric
curves have similar slopes in the middle region, ensuring that the response we observe in the
closest calls results from a shift in actions, and not from a change in information acquisition.

4 Recovering the AI Oversight Penalty

Finally, we structurally estimate the psychological costs of being overruled by AI using a
model of rational inattentive umpires.28 Here, we apply the rational inattention theory
introduced by Sims (2003) and characterized by Matějka and McKay (2015) and Caplin and
Dean (2013), which we refer to as the “Shannon model.” Bhattacharya and Howard (2022)

27Figure B.3 shows that these results are almost identical when broken down by serves and non-serves.
28While it could be interesting to consider the dynamic effects of being overruled by AI, we start by

considering a static model.

19



use this model to study attention constraints in baseball, while Brown and Jeon (2024) use
it to study consumers choosing among complex health insurance plans.

In our model, the set of states is ω ∈ {ωI , ωO} for the ball being in (ωI) or out (ωO),
and the set of actions is a ∈ {aI , aO} for calling the ball in (aI) or out (aO). The probability
of having an incorrect call be challenged is ηI when the ball is in, and ηO when the ball is
out, and both are equal to zero in tournaments without AI review. When the umpire’s call
is not challenged, we assume that they receive a normalized utility of 1 when correct and 0
when incorrect. When the umpire’s call is challenged, we also assume that they receive a
normalized utility of 1 when correct (when their call is upheld). But when incorrect (their
call is overturned), we assume that they receive 1 + cI when the ball is in and 1 + cO when
it is out. Thus, before taking into account attentional costs, gross expected utility U is

U(a, ω) =

ωI ωO( )
1 ηO

(
1 + cO

)
aI

ηI
(
1 + cI

)
1 aO

We parameterize the utility of an overturned call in this way so that we can interpret
cI and cO as the disutility of having been caught making a mistake by the AI system. For
shorthand, we refer to these parameters as the AI oversight penalty when the ball is in or
out. We expect that cI and cO are less than or equal to 0 because for the parameters to be
negative the umpire would need to be happier having their incorrect call overturned than
being correct in the first place. When cI and cO are equal to zero (when there is no AI
oversight penalty), then the umpire receives a utility of 1 after their call is overturned. This
is as if they only care that the correct call is implemented (due to altruism, relief, etc.)
and do not care at all about having been caught making a mistake by the AI system (due
to shame, embarrassment, subsequent arguments, etc.). When cI and cO are equal to −1,
then the umpire receives a utility of 0 after their call is overturned. This is as if any utility
gain from having the correct call implemented is perfectly offset by the AI oversight penalty.
When cI and cO are less than −1, the AI oversight penalty dominates any utility gain from
having the correct call implemented.

As is standard in models of attention, we assume that the umpire starts out with prior
belief µ, where µ(ω) is the probability of state ω ∈ {ωI , ωO}. After receiving a noisy mental
signal of whether the ball is in or out, the umpire forms posterior γ ∈ Γ, where γ(ω) is the
probability of state ω ∈ {ωI , ωO}. Given a posterior belief γ, the umpire decides what call to
make (mixing between actions is allowed), and we assume the umpire maximizes expected
utility when making a choice of how often to take each action at that posterior.

Under the assumption that the umpire updates their prior belief using Bayes rule, their
attention can be represented by a Bayes-consistent information structure π, which stochasti-
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cally generates posterior beliefs. Specifically, π is a function that maps the state into ∆(Γ),
the set of probability distributions over Γ that have finite support, so that π : ω → ∆(Γ).
Let Π denote the set of all such functions, π(γ) be the unconditional probability of posterior
γ ∈ Γ, π(γ|ω) be the probability of posterior γ given state ω, and Γ(π) ⊂ Γ denote the
support of a given π. We limit the set of information structures to those in Π(µ) ⊂ Π that
generate correct posteriors for a given prior belief µ, so that

Π(µ) =

π ∈ Π|∀γ ∈ Γ(π), ∀ω ∈ Ω, γ(ω) = µ(ω)π(γ|ω)∑
ω∈Ω

µ(ω)π(γ|ω)

 (2)

Next, we assume information structures are chosen, which we interpret as the umpire
choosing how much attention to pay and what aspects of the game to pay attention to,
as in Bhattacharya and Howard (2022). Each information structure π ∈ Π(µ) has an
additively-separable cost K(π) that scales linearly with the Shannon mutual information
between posteriors and the prior. Formally, K is determined by the function

K(π, κ, µ) = κ

 ∑
γ∈Γ(π)

π(γ)
∑
ω∈Ω

[γ(ω) ln(γ(ω))]
−

∑
ω∈Ω

[µ(ω) ln(µ(ω))]
 (3)

where κ ∈ R++ is a linear cost parameter, which can be interpreted as the marginal cost of
attention. We assume that κ is increasing in the difficulty of judging where a ball landed
and assume that the difficulty of this perceptual task is unimpacted by the introduction of
Hawk-Eye review.

We extend the standard Shannon model by allowing for different costs of attention for
different states, so that

K(π, κ, µ) = κI

 ∑
γ∈Γ(π)

π(γ)γ(ωI) ln(γ(ωI))
− µ(ωI) ln(µ(ωI))

 (4)

+κO

 ∑
γ∈Γ(π)

π(γ)γ(ωO) ln(γ(ωO))
− µ(ωO) ln(µ(ωO))

 (5)

where κI , κO ∈ R++. Whitney, Wurnitsch, Hontiveros, and Louie (2008) use data from
Wimbledon 2007 to show that umpires call more tennis balls as being out (when actually
in) than in (when actually out). Their results are consistent with psychometric experiments
that document how moving objects generate a perceptual bias and are perceived as being
shifted in the direction of their motion. Extending the Shannon model by allowing different
costs of attention for different states would help to accommodate these types of biases more
broadly.

With the Shannon model, the optimal information structure has one posterior at which
each action is taken. We denote these posteriors as γI when call in and γO when call out. By
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the Invariant Likelihood Ratio (ILR) of Caplin and Dean (2013), these optimal posteriors
must obey

γI(ωI)
γO(ωI) = e

U(aI ,ωI)−U(aO,ωI)
κI (6)

γO(ωO)
γI(ωO) = 1 − γO(ωI)

1 − γI(ωI) = e
U(aO,ωO)−U(aI ,ωO)

κO (7)

For matches where there was no AI review, the ILR condition, given by (6) and (7),
allows us to express the marginal costs of attention κI and κO cleanly as

κI = 1
ln γI(ωI) − ln γO(ωI) (8)

κO = 1
ln γO(ωO) − ln γI(ωO) (9)

When there is AI review, (6) and (7) allow us to solve for the AI oversight penalty, which
is the umpire’s disutility from having been caught making a mistake by the AI system. Those
values are given by

cI =
1 − κI

(
ln γI(ωI) − ln γO(ωI)

)
ηI

− 1 (10)

cO =
1 − κO

(
ln γO(ωO) − ln γI(ωO)

)
ηO

− 1 (11)

4.1 Structural Estimates

To structurally estimate the AI oversight penalty, we undertake two steps. First, we estimate
the marginal costs of attention when there is no AI review. When there is no AI review, these
marginal costs are fully determined by the optimal posteriors γI(ωI) and γO(ωO). Because
there is a single posterior for each action in our model, the optimal posteriors are equal
to the revealed posterior, which is P (ω|a), the probability of each state conditional on the
action taken. Our estimate of the true revealed posterior is the observed probability of each
state conditional on the action taken. We present the estimates recovered from the data,
along with the bootstrap standard errors obtained from drawing 1000 random samples with
replacement, each containing the same number of observations as the original dataset.

As shown in Table 3, our estimate of the revealed posterior for the ball being in when
calling in is 0.849, and our estimate of the revealed posterior for the ball being out when
calling out is 0.876 for all calls within 100 mm of the line before the introduction of AI
oversight. Based on (8) and (9), the marginal costs of attention that rationalize these values
are κI = 0.580 and κO = 0.510.
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Parameter Recovery equation Estimate
γI(ωI) N/A 0.849

γO(ωO) N/A 0.876

κI 8 0.580
(0.025)

κO 9 0.510
(0.024)

Standard errors in parentheses

Table 3: Estimated optimal posteriors and costs of attention before the introduction of AI oversight.

As a second step, we use these estimated costs of attention and the observed challenge
rates (our estimates of the true challenge rates ηI and ηO) to estimate the AI oversight
penalties. As shown in Table 4, the observed challenge rates when balls were in is 0.449 and
when balls were out is 0.415. Given the values of κI and κO determined without AI review,
the rationalizing AI oversight penalties are cI = −1.374 and cO = −0.903. It is important
to highlight that the AI penalty, in our case, can be seen as a lower bound to the costs
of shaming. Under the scenario that umpires do not care at all about the final outcome
being correctly implemented, then the cost of shaming equals the AI oversight penalty, but
otherwise, the shaming effect is bigger. These results are consistent with anecdotal evidence
regarding the increased controversy surrounding this type of error.

Parameter Recovery equation Estimate
ηI N/A 0.449

ηO N/A 0.415

cI 10 -1.374
(0.121)

cO 11 -0.903
(0.116)

Standard errors in parentheses

Table 4: Estimated challenge rates, AI oversight penalties, and mistake utilities.

These estimates suggest that the introduction of AI oversight left the utility of Type I
errors (1+ cO) potentially unchanged, as there is an increase from 0 before Hawk-Eye review
to 0.097 after, but the difference is not statistically significant. On the other hand, the
utility of Type II errors (1 + c1) reduces sharply, from 0 before Hawk-Eye review to −0.374
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after. Here, the AI oversight penalty dominates any utility gain from having the correct call
implemented.

These changes are hard to interpret in fractional terms, so we consider a re-normalization
of utility so that the utility of being correct is 0 and the utility of being incorrect is -1.
Under this re-normalization, the first stage estimates of the marginal cost of attention do
not change, and the second stage estimates of the AI penalty decrease by 1 to cI = −1.374
and cO = −0.903, which means that the (dis)utility of Type II errors (calling a ball out when
in) decreases from −1 to −1.374. Thus, these estimates suggest that umpires care 37% more
about Type II errors after the introduction of Hawk-Eye review.

5 Examining Heterogeneity

In this section, we study three main sources of heterogeneity: skill, stakes, and type of
perceptual task. Practically, this relates to differences by tournament stage (finals or earlier
stage), tournament tier (higher or lower tier), and shot type (serve and non-serve).

5.1 Heterogeneous Response by Umpire Skill

Umpires are rewarded for good performance with assignments to advanced-stage matches,
as the pool of officials needed becomes smaller and organizers can be more selective as the
tournament progresses. Our officiating source confirmed that not all umpires (particularly
line umpires) are professional officials, and you can expect to see more of them in the early
stages. These selection dynamics within tournaments create variation in umpiring skill.
Using later tournament stages to identify more skilled umpires may confound the analysis
by including matches with higher stakes. However, we demonstrate that this is not the case
at the end of the section.

To examine whether the impact of AI oversight differs by tournament stage, we split our
sample into two groups: the first group includes Final, Semifinal, and Quarterfinal matches,
where we expect to find the most skilled umpires, while the second group contains the
remaining matches. In Figure 5, we examine the AI oversight effect separately on the two
groups of matches we described. The change in the type of errors in bins closer to the line
is more pronounced and only significant for matches in the early stages, as highlighted by
the magenta markers. The estimated effects for advanced stage matches (green markers) are
not statistically significant. Despite having fewer observations, the estimated coefficients are
also smaller in absolute terms in bins around the dashed line.

In a study on radiologists, Chan, Gentzkow, and Yu (2022) found that aversion to false
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Figure 5: Impact of AI oversight on the incorrect call rate by proximity to the line (by tournament
stage). Matches are grouped into those at the final, semifinal, and quarterfinal stages and those
at all other (earlier) stages of a tournament and then analyzed separately. Each dot represents
the coefficient on the interaction between the distance bin and PostHK, the indicator variable that
equals 1 if the Hawk-Eye review system is active.
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negatives tends to be negatively related to radiologist skill. Specifically, lower-skilled radiol-
ogists are more likely to falsely diagnose a healthy patient with pneumonia (false positive)
because this error is less costly than missing a diagnosis. Our findings align with those of
Chan, Gentzkow, and Yu (2022), as less-skilled umpires are more likely to avoid the more
costly type of error (calling a ball in when it is actually out).

It is important to note that advanced matches also involve higher stakes. It is challeng-
ing to disentangle whether the observed effects are due to lower-skilled umpires or higher
stakes. To address this, we can compare differences in stakes by examining highly regarded
tournaments, such as Master 1000 events, against lower-tier tournaments like the 500 and
250 series. Figure B.5 shows that the discrepant patterns we observed between early and
advance-stage matches do not hold when we compare higher and lower-ranked tournaments.
If the difference in stakes is what drives the heterogeneity observed in Figure 5, we should
expect to see the same patterns between lower and higher-ranked tournaments, but we do
not. One might be concerned that the pool of umpires is more talented in Master 1000
tournaments. However, our officiating expert confirmed that the quality of the umpire pool
in our sample does not necessarily vary by tournament tier. Instead, it is influenced by a
range of factors, including geographic location, organizer budget, and the number of courts.
Therefore, we can effectively use different tournament tiers to demonstrate the effects of
varying stakes while assuming that any variation in umpire skill is uncorrelated.

5.2 Serves and Non-Serves

There is value in distinguishing between serves and non-serves,29 as we can think of them
as distinct tasks for the umpires. The primary differences, from an officiating standpoint,
between serves and subsequent hits lie in speed and anticipation. Serves may be considered
more challenging due to their significantly higher speed: the average speed for a serve in
our sample is 156 km/h, compared to 82 km/h for non-serves.30 However, serves have the
advantage of anticipation: umpires know the ball is about to be served and will most likely
bounce in a very specific region of the court (the serving box). This appears to be important:
when comparing the slowest quartile of serves (averaging 133 km/h) with the fastest quartile
of non-serves (averaging 106 km/h), we find that the error rates for serves are lower, despite
still containing faster strokes. The average incorrect rate during the period without Hawk-
Eye review for the first quartile in serves and the fourth quartile in non-serves is 11.6% versus
15.6% for balls within 100 mm of the line, and 27.5% versus 37.1% within 20 mm of the line.
Therefore, even though serves are much faster than non-serves, there is compelling evidence
to support that the anticipation advantage benefits umpires during serves.

29The serve starts off every point in tennis, with players alternating serving each game.
30Figure B.6 shows the speed distribution for both types.
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(a) Serves. (b) Non-serves.

Figure 6: Incorrect call rates by proximity to the line (separately for serves and non-serves). Each
dot is the rate of incorrect call for a bin of 20 mm, and dots to the left of the dashed line represents
bins out of bounds, and the right of the dashed line represents bins in bounds.

In Figure 6, we break down the incorrect call rates by serve and non-serves. This figure
shows that the shift in types of errors is present in both serves and non-serves. For serves,
the dominant effect is the shift in errors. For non-serves, the dominant effect is a decrease in
mistakes. This suggests that non-serves may have a higher potential for wholesale improve-
ment, which could be due to their more manageable speed and the opportunity they provide
to rectify mistakes caused by distraction or sparse attention.

Table 5 reports the results from estimating equation 1 separately for serves and non-
serves that bounced within 100 mm of the line. In our main specification, we do not find
evidence that AI oversight impacted umpire performance during serves. However, we do find
evidence that AI oversight corresponds to a 2.3 percentage point decrease in incorrect calls
for non-serves. This corresponds to a 17% reduction compared to the baseline mean level of
0.136.

If we just consider those calls when the ball bounces between 100 and 20 mm from the
line, Table 6a, shows that there is a statistically significant reduction in mistakes for both
serves and non-serves. However, we find something different if we look at the closest calls.
In Table 6b, we present the estimates for equation 1 when restricting the sample to bounces
within 20 mm. This subset of calls is arguably the most complicated for umpires, and
improving performance further would entail excessive cognitive costs. For these calls, the
introduction of Hawk-Eye resulted in a 7.3 percentage point increase in incorrect calls for
serves, representing a 22.9% increment from the baseline. While this result focuses on a very
specific subset of the sample (serves within 20 mm), it provides evidence of which type of
situations can lead AI oversight to backfire.
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(1) (2) (3) (4) (5) (6) (7) (8)
Incorrect call (Serves) Incorrect call (Non-serves)

PostHK -0.006 -0.002 0.000 0.000 -0.024∗∗ -0.021∗∗ -0.023∗∗ -0.023∗∗

(0.010) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.011)

Point controls X X X X X X

Match controls X X X X

Cluster level Match Match
N 9,253 9,253 8,990 8,990 7,559 7,559 7,345 7,345

Baseline mean .139 .139 .137 .137 .138 .138 .136 .136
Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

Table 5: OLS regressions of umpire mistakes for balls bouncing within 100 mm of the line separately
for serves and non-serves. PostHK = 1 if the Hawk-Eye review is active; point controls include
distance fixed effects (by 20 mm bins), speed (whether is below or above the median), score, game,
set, and an indicator if the point played is in the tie-break stage; and match controls include round
and tournament tier.

6 Conclusion

Our results highlight the fact that while introducing an AI system to overrule apparent
human mistakes seems promising in principle, especially since it might motivate higher effort
from decision-makers, there are two central reasons to approach this with caution. First,
there is a free-riding motive in which the technology can dissuade decision-makers from
contributing effort under the belief that important mistakes will be recognized and wiped
out by the technology anyway (Margolin, Reimer, and Schaupp (2024) find evidence that
inexperienced soccer referees use real-time feedback as a safety net against making incorrect
initial decisions). This argument holds more weight in contexts where the decision-maker
prioritizes the ultimate outcome over their own performance. For example, cars now include
an auto-steering device that centers the car when it approaches the lane edge. This type
of AI oversight might lead drivers to ignore the road ahead, which could have disastrous
consequences more generally.

The second reason, which is more important for the context we study, is an incentive
misalignment motive, as the particular implementation guidelines of the oversight system
can shift the incentives for the decision-maker. This becomes problematic when the incentive
shift reduces the overall quality of their decisions from the perspective of the social planner.
As we argue in Section 4, we do not have reason to believe that before the introduction of
Hawk-Eye review a particular type of incorrect call was costlier than the other, at least from
the perspective of the umpire. Under this assumption, umpires should be aiming to minimize
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(1) (2) (3) (4) (5) (6) (7) (8)
Incorrect call (Serves) Incorrect call (Non-serves)

PostHK -0.020∗∗ -0.018∗∗ -0.017∗∗ -0.017∗∗ -0.012 -0.017∗∗ -0.020∗∗∗ -0.020∗∗

(0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.011)

Point controls X X X X X X

Match controls X X X X

Cluster level Match Match
N 7,499 7,499 7,238 7,238 6,047 6,047 5,785 5,785

Baseline mean .092 .092 .091 .091 .082 .082 .080 .080
Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

(a) For balls bouncing 20-100 mm away from the line.

(1) (2) (3) (4) (5) (6) (7) (8)
Incorrect call (Serves) Incorrect call (Non-serves)

PostHK 0.063∗∗ 0.063∗∗ 0.073∗∗ 0.073∗∗ -0.035 -0.037 -0.031 -0.031
(0.031) (0.031) (0.032) (0.030) (0.031) (0.031) (0.033) (0.034)

Point controls X X X X X X

Match controls X X X X

Cluster level Match Match
N 1,804 1,804 1,752 1,752 1,512 1,512 1,470 1,470

Baseline mean .325 .325 .319 .319 .333 .333 .325 .325
Standard errors in parentheses
∗ p < .10, ∗∗ p < .05, ∗∗∗ p < .01

(b) For balls bouncing within 20 mm of the line.

Table 6: OLS regressions of umpire mistakes (separately for serves and non-serves). PostHK = 1
if the Hawk-Eye review system is active; point controls include distance fixed effects (by 20 mm
bins), speed (whether it is below or above the median), score, game, set, and an indicator if the
point played is in the tie-break stage; and match controls include round and tournament tier.
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the total number of mistakes when there was no oversight. However, if the umpires’ attention
has already reached a point where improvement would demand a tremendous amount of
additional effort, distorting the relative costs of the two types of errors could result in an
increase in total number of mistakes. Umpires may be inclined to reduce the now costlier
type of error (e.g., calling a ball out when it was in) at the expense of increasing, by more
than a 1:1 ratio, the now relatively less costly type of error (e.g., calling a ball in when it was
out). Our analysis suggests that when balls landed very close to the line, umpires were more
inclined to call them in, as an attempt to minimize the occurrence of the more costly type of
error. It also suggests that, in overall terms, the effect of incentive misalignment outweighed
the incentives to improve performance, which led to an upsurge of incorrect calls during balls
that were just out. This shift in the types of errors can be highly detrimental in medical and
judicial contexts, where Type I and Type II errors have widely differing implications.

We view our paper as an initial building block for understanding the implications of
AI oversight on humans. Future research could be conducted in experimental settings to
complement our findings, gaining more control over AI and human costs, and exploring in
more detail the underlying mechanisms.
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A Data Management

A.1 Exclusion of Clay Tournaments

The officiating dynamics in clay tournaments are different. Players are allowed to request
the chair umpire to review the ball bounce marks on the surface, and changing the call based
on that is permitted. The clay surface presents some particular difficulties; as the surface
is continuously changing during a match, the accuracy of Hawk-Eye decreases and requires
constant re-calibration to operate at its best.31

Tournaments on clay surfaces rejected the idea of incorporating Hawk-Eye review. They
argued that they already had a mechanism in place to review incorrect calls (ball marks) and
expressed reluctance, citing concerns that Hawk-Eye might not be precise enough on this
surface. Another reason for rejecting the use of Hawk-Eye on clay is to avoid controversies
where the ball’s mark and Hawk-Eye might disagree. As noted in The Guardian, Lars Graf,
one of the ATP’s most experienced officials, explained the decision not to use Hawk-Eye on
clay: “We decided not to use Hawk-Eye on clay because it might not agree with the mark
the umpire is pointing at”.32

At first glance, clay tournaments may appear as an ideal control group for comparing
umpire reactions in tournaments with Hawk-Eye review versus those on clay. However,
several complications arise, leading us to the decision to exclude clay tournaments. Firstly,
before the introduction of Hawk-Eye, umpires in clay tournaments had different incentives.
They could delegate some responsibility by calling more bounces as in and allowing the
receiving player to request a mark review if there was evidence suggesting it was out. Since
players cannot cross to the other side of the court, the receiving player has a direct view of
the ball mark, making it easier for umpires to delegate in that direction. Secondly, although
clay tournaments did not allow player challenges, the camera system was installed, and
Hawk-Eye predictions were shown on TV broadcasts. This could have an effect on umpires,
but it should differ from corrections made in the stadium. A third reason for avoiding the
use of clay data is our inability to determine from our dataset which calls were corrected
after examining the clay marks.

In summary, we excluded clay tournaments due to the unique incentive scheme based on
ball marks, the differing treatment they received, and the complication in observability they
present.

31https://www.perfect-tennis.com/why-there-is-no-hawk-eye-on-clay/
32https://www.theguardian.com/lifeandstyle/2009/jun/27/tennis-hawk-eye
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A.2 Merging Algorithm

Our merging algorithm was designed to identify the highest number of the 144 challenges
(derived from the 43 matches with video replays) within the Hawk-Eye Base data set, while
keeping the number of false positives (challenges matched into the wrong point) as low as
possible. We used standard variables, such as set, game, score, distance difference, player
hitting the ball, and whether it was a tie-break, in order to minimize over-fitting.

Our final merging algorithm comprises eight iterations, where we start using stricter
criteria and gradually relax them in subsequent iterations. Some iterations, like 5 and 6
focus on very specific situations of the match (tie-breaks), and while in the testing sample
do not seem useful, they might prove useful in a bigger sample.

The algorithm merged 143 out of the 144 challenges, achieving a merge rate of 99.3%.
Out of these, 136 were merged to the correct point, as validated through video auditing
replays, resulting in an accuracy rate of 94.4%. It would be hard to improve this efficacy as
there are many challenges with missing variables like set and game. We will now elaborate
on the specific criteria used in each of the eight iterations, followed by Table A.1 which
summarizes the number of challenges successfully merged (and false positives) achieved in
each iteration.

Merging criteria for each iteration:

Iteration 1. Same set, game, score, and player (w/ distance difference <35 mm)

Iteration 2. Same set, game, and player (w/ distance difference <15 mm)

Iteration 3. Same set, score, and player (w/ distance difference <15 mm)

Iteration 4. Same game, score, and player (w/ distance difference <10 mm)

Iteration 5. For tie-breaks: Same game and score (w/ distance difference <35 mm)

Iteration 6. For tie-breaks: Same game. If multiple, pick closest in distance (w/
distance difference <15 mm)

Iteration 7. Same set, game and player. If multiple, pick closest point in score and
then in distance (w/ distance difference <35 mm)

Iteration 8. Same set and player. If multiple, pick closest point in distance (w/ distance
difference <35 mm)
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Iteration Correct Merge False Positives Efficacy Challenges Left
1 98 2 98% 44
2 25 2 93% 17
3 5 0 100% 12
4 1 0 100% 11
5 0 0 − 11
6 0 0 − 11
7 5 0 100% 6
8 2 3 40% 1

Table A.1: Performance for each iteration of the merging algorithm. Out of the 144 challenges
audited, only one remained unmerged.

A.3 Identification of Incorrect Calls

The Hawk-Eye Base data set contains the precise location of every ball bounce and iden-
tifies the winner of each point. However, it lacks direct information on the umpires’ calls.
Therefore, we are tasked with identifying the original umpire calls, which we do through
the application of four criteria. The first two determine points where the umpire incorrectly
called something in, and the final two identify the other type of incorrect call (umpire calling
something incorrectly out). In the period involving challenges, we first restore the umpire’s
original calls following a successful challenge. Then, we assess whether any of the four crite-
ria are satisfied. We are confident that these four criteria comprehensively identify potential
mistakes in our dataset.

Criterion 1. A player’s stroke is out and wins the point

We selected strokes where the first player to hit a ball out in a given point also won the
point. We identified 55 points that satisfy this criterion, and 54 of them were confirmed by
the video replays to be mistakes, resulting in a 98% accuracy rate.

Criterion 2. The point continued after an out

To complement Criterion 1, we must also identify points where a player hit a ball out,
and despite the error, the point continued, but the same player ultimately lost the point. To
achieve this, we examine instances where, after a player hits the ball out, there are at least
three more strokes registered. Out of the 25 points satisfying this criterion, 24 were umpire
mistakes, yielding an accuracy rate of 96%.

We also tested a more relaxed criterion that identifies points recording at least two more
strokes after an out. However, this criterion proved to be too lenient, encompassing multiple
cases where the point was correctly called, and players continued hitting the ball afterward.
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When the criterion is relaxed to require at least two more strokes, the accuracy rate drops
to 52%. This adjustment results in the identification of one new mistake at the expense of
24 incorrectly identified instances. This is why we adhere to the 3+ rule.

Criterion 3. All the strokes of a point are in, and the player hitting last loses

We identify strokes where the last player to hit the ball in, did not win the point. Out of
the 25 points identified in the auditing matches, 23 were confirmed to be mistakes, resulting
in a 92% accuracy rate.

Criterion 4. Observing a second serve after the first serve was in

This criterion helps identify two types of instances where there is no winner in a point
as a direct consequence of an umpire mistake. First, it recognizes those first serves that
bounced in but were incorrectly ruled out, resulting in no winner for the point, which then
moves to a second serve. Secondly, it detects points that lasted multiple strokes but had
to be replayed because the umpire stopped the point by incorrectly calling a ball out. The
accuracy rate for this criterion is 86%, with 36 of the 43 selected points identified as umpire
mistakes. Some inaccurately selected points by this criterion include lets (serves that hit the
top of the net and the point is replayed) and other unusual events (e.g., a server touching
the line while serving, and the serve not counting). The occurrence and our identification of
these events should not change with the introduction of Hawk-Eye

For this criterion, we limit the analysis to strokes within 40mm of the line, as beyond this
threshold, the criterion becomes widely inaccurate. For balls bouncing between 40-100mm
away from the line, this criterion has a 30% accuracy rate, as only seven of the 23 points
audited were actual umpire mistakes.
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B Additional Tables and Figures

Figure B.1: The location of the umpiring crew: S = the serve-line umpire, RB = the right baseline
umpire, RN = the right near long-line umpire, RC = the right center-line umpire, RF = the right
far-side long-line umpire. The left side of the court has corresponding line umpires, except for the
serve-line umpire, who moves to the left side when the right side player has the serve.
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Tournament Start Month Category Court Type Number of Games

2005 2006 2007 2008

Marseille Feb International (250) Hard 25
Rotterdam Feb International Gold (500) Hard 15 26
Dubai Mar International Gold (500) Hard 19
LasVegas Mar International (250) Hard 19
IndianWells Mar Masters (1000) Hard 17 27
Miami Mar Masters (1000) Hard 15 18 26
Queens Jun International (250) Grass 13 19 18
UCLA Jul International (250) Hard 23
Indianapolis Jul International (250) Hard 7 23
Washington Jul International (250) Hard 21
Montreal Aug Masters (1000) Hard 20 27
Toronto Aug Masters (1000) Hard 25
Cincinnati Aug Masters (1000) Hard 11 19 24
NewHaven Aug International (250) Hard 18
Beijing Sep International (250) Hard 20
KremlinCup Oct International (250) Carpet06 Hard07 8 15
Madrid Oct Masters (1000) Hard 30 30
Basel Oct International (250) Hard 12
Paris Masters Oct Masters (1000) Carpet06 Hard07 31 33
Shanghai Nov Masters (1000) Carpet05 Hard06-07 14 15 15

Table B.1: Information on the 35 tournaments in the consolidated dataset. The numbers in each
cell indicate the matches available in our dataset. The color represents the group of tournaments,
with blue indicating Pre-HK and red indicating Post-HK.
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Figure B.2: An analog of Figure 2, using a one-treatment-at-a-time approach.

(a) Serves. (b) Non-serves.

Figure B.3: An analog of Figure 4, separating serves and non-serves.
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Figure B.4: The dots represent the average rate at which umpires call a ball “in” when it bounces
within a 10 mm radius (e.g., at x=0 is the average rate for balls bouncing between -10 mm and +10
mm). The psychometric curves were approximated using locally weighted scatterplot smoothing.
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Figure B.5: Heterogeneous Impact of AI Oversight on Umpires’ Performance Across 20 mm Distance
Bins by Tournament Category. We conducted other separate analyses, categorizing matches from
higher ranked tournaments (Masters 1000) vs lower ranked (International 500 and 250).

Figure B.6: Speed distribution for all the balls that bounced within 100 mm of the line, separated
by non-serves and serves.
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