
Annals of Nuclear Energy 216 (2025) 111250 

0

Contents lists available at ScienceDirect

Annals of Nuclear Energy

journal homepage: www.elsevier.com/locate/anucene

A nonclassical model to eigenvalue neutron transport calculations
Leonardo R.C. Moraes a ,∗, Ricardo C. Barros a , Hermes Alves Filho a , Richard Vasques b

a Universidade do Estado do Rio de Janeiro, Programa de Pós-graduação em Modelagem Computacional – IPRJ, Rua Bonfim 25, 28625-570, Nova
Friburgo, RJ, Brazil
b The Ohio State University, Department of Mechanical and Aerospace Engineering, 201 W. 19th Avenue, Columbus, OH 43210, United States of America

A R T I C L E I N F O

Keywords:
Nonclassical transport
Eigenvalue calculations
Spectral approach
Random media
Slab geometry

A B S T R A C T

In this work, we present an extension of the nonclassical transport model, namely the generalized linear
Boltzmann equation (GLBE), to eigenvalue criticality problems. The GLBE is a generalization of the linear
Boltzmann equation that allows the modeling of particle transport in random statistically homogeneous systems
in which the free-path distribution function 𝑝(𝜴, 𝑠) is non-exponential. This type of problem is referred to as a
nonclassical transport problem. The model’s ability to accurately replicate the expected value for the system’s
effective multiplication factor and the profile of the neutron scalar flux for both classical and nonclassical
transport problems is analyzed.
1. Introduction

Stochastic transport problems form a class of particle transport
problems where the material parameters are known only in a statistical
sense. The generation of the expected particle intensity in phase space
is usually the primary objective in problems of this nature. The most
common technique used for calculating the expected particle intensity
is the direct method (Adams et al., 1989; Olson, 2007; Pomraning,
2002; Su and Pomraning, 1993). In this method, the conventional
linear transport equation (Prinja and Larsen, 2010) is solved for a
variety of possible physical configurations, and the average of these
solutions is used as the expected particle intensity. Although fairly
simple to implement, the direct method needs to take into account a
large number of physical configurations to produce an average solution
with a small variance, which is why it is frequently avoided.

The potential challenges that the direct method may impose con-
cerning time efficiency have pushed forward the development of a
number of methods to solve stochastic problems. In the most notable
method developed, namely the Atomic Mix method (Torquato et al.,
2000; Dumas and Golse, 2000; Pomraning, 1991), the expected parti-
cle intensity is obtained through the solution of the linear transport
equation considering volume-averaged homogenized cross sections.
Nonetheless, there are some stochastic problems where the Atomic Mix
method cannot yield reliable results. Contrary to the exponential at-
tenuation (linear transport model) assumed in the Atomic Mix method,
correlations between scattering centers and/or unresolved spatial fluc-
tuations in the system cause the flux of particles in these problems
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to decay non-exponentially (Larsen and Vasques, 2011; Vasques and
Larsen, 2009; Davis and Marshak, 2004; Davis, 2004; Davis and Xu,
2014; Davis and Mineev-Weinstein, 2009). This group of stochastic
problems, namely nonclassical problems, is the focus of the nonclassical
particle transport theory.

The generalized linear transport equation (GLBE) is a mathematical
model that can be used to simulate fixed-source nonclassical particle
transport problems. It was first derived by Larsen in Larsen (2007)
to describe measurements of photon path-length in the Earth’s cloudy
atmosphere that could not be explained by classical radiative transfer.
Although first used in the radiative transfer context, the nonclassical
transport model found its way into a variety of areas such as computer
graphics (Jarabo et al., 2018; Bitterli et al., 2018; Wrenninge et al.,
2017), and reactor physics (Vasques and Larsen, 2009, 2014c; Vasques,
2013; Vasques et al., 2017). Moreover, the development of methods to
efficiently solve the GLBE is nowadays an active area of research (Patel
et al., 2022; Moraes et al., 2022c,a, 2023b; Vasques et al., 2020).

Differently from fixed-source particle transport problems, where
the goal is, given the incidence of particles through the boundaries
and/or interior particle sources, to calculate the particle intensity in
the system (or the expected particle intensity in stochastic problems),
in the so-called eigenvalue particle transport problems, the main goal
is to estimate the effective multiplication factor (𝑘𝑒𝑓 𝑓 ) of the system.
In nuclear reactor physics, 𝑘𝑒𝑓 𝑓 expresses the ratio of the neutrons
produced by fission in one generation to the number of neutrons lost
through absorption and leakage in the preceding generation within the
https://doi.org/10.1016/j.anucene.2025.111250
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system. The accurate calculation of this quantity is important since
it indicates whether the chain fission reaction in the system can be
ustained. The 𝑘𝑒𝑓 𝑓 is of particular interest in the design of nuclear

reactors and in the safety analysis of a reactor (Romojaro et al., 2017;
Li-Po et al., 2008; Gandini and Salvatores, 2002; Moraes et al., 2022b,
2021).

In this work, we extend the nonclassical particle transport model
(Vasques and Larsen, 2014a) to eigenvalue calculations. This exten-
ion is motivated by the concept of the Gen IV Pebble Bed Reactors
PBR) (Kadak, 2005; Gougar et al., 2010; Lohnert and Reutler, 1983;

Moormann, 2009; Ge et al., 2016). The basic design of PBR features
 reactor core composed of a bed of spherical fuel elements (pebbles)
onsisting of thousands of fuel particles embedded in a graphite matrix.

Hundreds of thousands are randomly packed in the reactor core gener-
ating a sustained fission chain reaction which is cooled by high-pressure
gas forced through the interstitial spaces between the pebbles. Due to
his dynamic structuring, the exact locations of the pebbles inside the

core at any given time are unknown (stochastic problem). Moreover,
the fact that pebbles are O(1) mean free paths thick calls into question
the validity of the atomic mix approximation (Larsen et al., 2005). That
stimulates the development of different methodologies to calculate the
effective multiplication factor in nonclassical systems, such as the one
presented in this paper. At this point, we remark that although our

otivation resides on the concept of the PBR, we are not tackling PBR
roblems in this work. Our focus is to derive a mathematical model
o eigenvalue calculations that can be applied to different nonclassical

problems in fission-chain reacting systems.
A summary of the remainder of this paper is given next. In Section 2

we present the derivation of a particle transport equation for nonclassi-
cal eigenvalue problems (𝑘𝑒𝑓 𝑓 -GLBE). In Section 3 we briefly describe
a solution process for the one-dimensional version of the 𝑘𝑒𝑓 𝑓 -GLBE in
the discrete ordinates (SN) formulation. We have chosen to deal with
the one-dimensional version of the 𝑘𝑒𝑓 𝑓 -GLBE since, to our knowledge,
this is the first attempt to use the nonclassical transport model in eigen-
value calculations. Numerical results are given in Section 4 to analyze
he model’s ability to accurately replicate the expected value for the

system’s effective multiplication factor and the profile of the neutron
calar flux for both classical and nonclassical transport problems. We

finish with a number of concluding remarks in Section 5.

2. A nonclassical particle transport equation for eigenvalue calcu-
ations

Differently from classical problems, in nonclassical transport prob-
lems the incremental probability 𝑑 𝑝 that a particle will collide while
raveling an incremental distance 𝑑 𝑠 is considered as (Vasques and
arsen, 2014a)

𝑑 𝑝 = 𝛴𝑡(𝒙,𝜴, 𝑠)𝑑 𝑠, (2.1)

where 𝒙 = (𝑥, 𝑦, 𝑧) is a point of space, 𝜴 = (𝛺𝑥, 𝛺𝑦, 𝛺𝑧) is the particle’s
direction of flight, such that |𝜴| = 1, 𝑠 is the path-length, i.e., the
distance traveled by the particle since its last interaction (birth or scat-
tering), and 𝛴𝑡 is the total macroscopic cross-section. The components
of 𝜴 are 𝛺𝑥 =

√

1 − 𝜇2 𝑐 𝑜𝑠𝜙, 𝛺𝑦 =
√

1 − 𝜇2 𝑠𝑖𝑛𝜙 and 𝛺𝑧 = 𝜇, where
= 𝑐 𝑜𝑠𝜃 and 𝑑 𝛺 = 𝑑 𝜇 𝑑 𝜙 with 𝜃 and 𝜙 being the polar and azimuthal

angles respectively. We remark that in more general problems 𝛴𝑡 will
also be dependent of the particle’s kinetic energy.

As we can see in Eq. (2.1), in nonclassical transport problems the
total cross section is dependent not only of 𝒙 (as in classical problems)
but also of 𝜴 and 𝑠. The idea of making 𝛴𝑡 also dependent of 𝜴 and

is that by extending the phase-space of 𝛴𝑡 we make it possible to
athematically model transport problems where the particle flux is

not necessarily exponentially attenuated. To visualize this modeling
extension, let us consider, with no loss of generality, a homogenized
ystem (𝛴𝑡 is not dependent of 𝒙). Moreover, we define 𝑁(𝜴, 𝑠) as the

umber of particles that have traveled a distance 𝑠 in the direction 𝜴

2 
without experiencing collisions. Using a similar definition, 𝑁(𝜴, 𝑠+𝑑 𝑠)
is the number of particles that have traveled a distance 𝑠 + 𝑑 𝑠 in
𝜴 without experiencing collisions. The quantity 𝑁(𝜴, 𝑠 + 𝑑 𝑠) can be
rewritten as a truncated Taylor Series (Anon, 2008) as

𝑁(𝜴, 𝑠 + 𝑑 𝑠) = 𝑁(𝜴, 𝑠) + 𝜕
𝜕 𝑠𝑁(𝜴, 𝑠)𝑑 𝑠. (2.2)

Rearranging the terms of Eq. (2.2), and dividing the resulting equation
by 𝑁(𝜴, 𝑠) we obtain the following expression

−
𝑁(𝜴, 𝑠) −𝑁(𝜴, 𝑠 + 𝑑 𝑠)

𝑁(𝜴, 𝑠) = 1
𝑁(𝜴, 𝑠)

𝜕
𝜕 𝑠𝑁(𝜴, 𝑠)𝑑 𝑠. (2.3)

If we pay close attention to Eq. (2.3), we notice that the left-hand side
f this equation is equal to the probability that a particle migrating in

will have a collision while traveling an incremental distance 𝑑 𝑠 in
he system. That is,
− 𝛴𝑡(𝜴, 𝑠)𝑑 𝑠 = 1

𝑁(𝜴, 𝑠)
𝜕
𝜕 𝑠𝑁(𝜴, 𝑠)𝑑 𝑠, (2.4a)

which is equivalent to
𝜕
𝜕 𝑠𝑁(𝜴, 𝑠) + 𝛴𝑡(𝜴, 𝑠)𝑁(𝜴, 𝑠) = 0. (2.4b)

The solution of Eq. (2.4b) takes the form

𝑁(𝜴, 𝑠) = 𝑁0(𝜴)𝑒− ∫ 𝑠0 𝛴𝑡(𝜴,𝑠
′)𝑑 𝑠′ , (2.5)

where 𝑁0(𝜴) = 𝑁(0,𝜴) is the initial (𝑠 = 0) number of neutrons
migrating in the direction of 𝜴. If classical transport takes place then
𝛴𝑡(𝜴, 𝑠) = 𝛴𝑡, and Eq. (2.5) becomes

𝑁(𝜴, 𝑠) = 𝑁0(𝜴)𝑒−𝛴𝑡𝑠. (2.6)

From Eq. (2.6) we notice that by considering the total cross section as
ndependent of 𝜴 and 𝑠, we are inherently assuming that the particle
lux is exponentially attenuated. On the other hand, the consideration
f 𝛴𝑡 as a function of 𝜴 and 𝑠 allows the mathematical modeling
f transport problems where the particle flux is not exponentially
ttenuated. According to Eq. (2.5), the particle flux can assume char-
cteristics other than exponential, depending on the choice of 𝛴𝑡(𝜴, 𝑠).
ollowing the phase-space extension of 𝛴𝑡, a particle transport equation
or nonclassical eigenvalue calculations is derived next.

2.1. Derivation of the 𝑘𝑒𝑓 𝑓 GLBE

We begin by imposing some assumptions about the problem and
introducing some definitions that are going to be used in the derivation
of the 𝑘𝑒𝑓 𝑓 GLBE:

• The system is infinite and statistically homogeneous;
• The particle considered is the neutron, and the transport is mo-

noenergetic;
• 𝛴𝑡(𝒙,𝜴, 𝑠) = 𝛴𝑡(𝜴, 𝑠) is a known function. As the material parame-

ters are known only in a statistical sense in nonclassical problems,
the true cross-section of the problem 𝛴𝑡(𝒙,𝜴, 𝑠) is replaced by the
homogenized cross-section 𝛴𝑡(𝜴, 𝑠). The generation of accurate
cross sections 𝛴𝑡(𝜴, 𝑠) is crucial, and can be a challenging task.
Reference Larsen and Vasques (2011) provide details about this
calculation;

• The phase space that represents the system is extended to include
the variable 𝑠. Moreover, 𝑛(𝒙,𝜴, 𝑠) represents the neutron angular
density, and 𝑁(𝒙,𝜴, 𝑠) = 𝑛(𝒙,𝜴, 𝑠)𝑑 𝑉 𝑑 𝛺 𝑑 𝑠 is the number of
neutrons in 𝑑 𝑉 𝑑 𝛺 𝑑 𝑠 about (𝒙,𝜴, 𝑠) at time 𝑡;

• The neutron speed is 𝑣 = 𝑑 𝑠
𝑑 𝑡 , and the angular flux density is

𝛹 (𝒙,𝜴, 𝑠) = 𝑣𝑛(𝒙,𝜴, 𝑠). Moreover, 𝛹 → 0 when |𝒙| → ∞ and/or
𝑠 → ∞;

• 𝑐𝑠 and 𝑐𝑓 are, respectively, the probabilities that a neutron when
collides will scatter or induce fission. These constants are not
functions of either 𝜴 and 𝑠 since these variables affect only the
collision probability of a neutron. Thus, 𝑐𝑠 and 𝑐𝑓 are probabil-
ities associated with neutrons that already have experienced a
collision;
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• 𝑃 (𝜴′ ⋅ 𝜴)𝑑 𝛺 is the probability that when a neutron migrating
in the direction 𝜴′ scatters it will migrate in 𝑑 𝛺 about 𝜴. This
quantity is independent of 𝑠 since it presumes that the neutron
already has experienced a collision;

• All neutrons released in fission events are considered ‘‘prompt’’,
i.e., they are instantly released after fission reactions. In addition,
𝜈 represents the average number of neutrons released in a fission
event.

A particle transport equation is a conservation equation, i.e, it mathe-
matically represents the balance between gain and losses of a certain
ype of particle in the system. In the case of this work, this balance is

represented as

{Rate of change = Rate of gain − Rate of loss} of neutrons in
 𝑉 𝑑 𝛺 𝑑 𝑠 about (𝒙,𝜴, 𝑠). (2.7)

The rate of change of neutrons can be obtained by taking the derivative
of the angular flux with respect to the variable 𝑠. That is,
Rate of change of neutrons in 𝑑 𝑉 𝑑 𝛺 𝑑 𝑠 about (𝒙,𝜴, 𝑠)
= 𝜕
𝜕 𝑠𝛹 (𝒙,𝜴, 𝑠)𝑑 𝑉 𝑑 𝛺 𝑑 𝑠

= 𝜕
𝜕 𝑠
𝑑 𝑠
𝑑 𝑡 𝑛(𝒙,𝜴, 𝑠)𝑑 𝑉 𝑑 𝛺 𝑑 𝑠

= 𝜕
𝜕 𝑡 𝑛(𝒙,𝜴, 𝑠)𝑑 𝑉 𝑑 𝛺 𝑑 𝑠.

(2.8)

Now, concerning the rate of losses, two events are responsible for the
loss of neutrons: (I) the collision of neutrons with the nucleons that
compose the background materials; and (II) the migration of neutrons
out of the system. The collision rate term can be written as

𝛴𝑡(𝜴, 𝑠)𝛹 (𝒙,𝜴, 𝑠)𝑑 𝑉 𝑑 𝛺 𝑑 𝑠 =𝛴𝑡(𝜴, 𝑠)𝑑 𝑠𝑑 𝑡 𝑛(𝒙,𝜴, 𝑠)𝑑 𝑉 𝑑 𝛺 𝑑 𝑠

= 1
𝑑 𝑡

[

𝛴𝑡(𝜴, 𝑠)𝑑 𝑠
]

𝑛(𝒙,𝜴, 𝑠)𝑑 𝑉 𝑑 𝛺 𝑑 𝑠
= rate at which neutrons in 𝑑 𝑉 𝑑 𝛺 𝑑 𝑠 about
(𝒙,𝜴, 𝑠)
experience collisions.

(2.9)

The migration term represents the net rate at which neutrons will leak
ut the system. This is represented as

|𝜴 ⋅ 𝒏|𝛹 (𝒙,𝜴, 𝑠)𝑑 𝑆 𝑑 𝛺 𝑑 𝑠 = rate at which neutrons in 𝑑 𝛺 𝑑 𝑠 about (𝜴, 𝑠)
flow through the incremental surface 𝑑 𝑆
with unit outward normal vector 𝒏.

(2.10a)

Making use of the divergence theorem (Stewart, 2009), we rewrite
Eq. (2.10a) as

𝜴 ⋅ ∇𝛹 (𝒙,𝜴, 𝑠)𝑑 𝑉 𝑑 𝛺 𝑑 𝑠 = net rate of neutrons in 𝑑 𝛺 𝑑 𝑠 about (𝜴, 𝑠)
that leak out 𝑑 𝑉 about 𝒙.

(2.10b)

Using Eqs. (2.9) and (2.10b) we define the rate of loss as
Rate of loss of neutrons in 𝑑 𝑉 𝑑 𝛺 𝑑 𝑠 about (𝒙,𝜴, 𝑠) =

[

𝛴𝑡(𝜴, 𝑠)𝛹 (𝒙,𝜴, 𝑠) +𝜴 ⋅ ∇𝛹 (𝒙,𝜴, 𝑠)] 𝑑 𝑉 𝑑 𝛺 𝑑 𝑠. (2.11)

Once the rate of loss is defined, we focus our attention on the
rate of gain. In multiplying systems, various reactions can contribute
to neutron gain. However, only two reactions, namely in-scatter and
ission reactions, will be considered in this derivation. The reason is

that their occurrence rate is much larger compared to other reactions
that promote neutron gain. Therefore, reactions other than in-scatter
and fission can be neglected without loss of precision. To describe the

rates of gain associated with in-scatter and fission reactions we first i

3 
define
[

∫

∞

0
𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′

]

𝑑 𝑉 𝑑 𝛺′

rate at which neutrons in 𝑑 𝑉 𝑑 𝛺′

about (𝒙,𝜴′) experience collisions.

(2.12)

Multiplying Eq. (2.12) by 𝜈 𝑐𝑓
4𝜋 𝑑 𝛺 and integrating the resulting equation

over 𝛺′ ∈ 4𝜋 we obtain
[

∫4𝜋 ∫

∞

0

𝜈 𝑐𝑓
4𝜋

𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′
]

𝑑 𝑉 𝑑 𝛺

= rate at which neutrons are released
in 𝑑 𝑉 𝑑 𝛺 about (𝒙,𝜴) from fission reactions.

(2.13a)

Following a similar procedure, we multiply Eq. (2.12) by 𝑐𝑠𝑃 (𝜴′ ⋅𝜴)𝑑 𝛺
nd integrate the resulting equation over 𝛺′ ∈ 4𝜋, thus obtaining
[

∫4𝜋 ∫

∞

0
𝑐𝑠𝑃 (𝜴′ ⋅𝜴)𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′

]

𝑑 𝑉 𝑑 𝛺

= rate at which neutrons
scatter into 𝑑 𝑉 𝑑 𝛺 about (𝒙,𝜴).

(2.13b)

At this point, we recall the definition of the variable 𝑠, i.e., the distance
traveled by the particle since its last interaction. This means that
neutrons released in fission and scattering reactions have their 𝑠 vari-
able set to zero. Therefore, the path-length spectrum of neutrons that
emerge from these reactions is the delta function 𝛿(𝑠). Thus, multiplying
qs. (2.13) by 𝛿(𝑠)𝑑 𝑠 we obtain
[

𝛿(𝑠)∫4𝜋 ∫

∞

0

𝜈 𝑐𝑓
4𝜋

𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′
]

𝑑 𝑉 𝑑 𝛺 𝑑 𝑠

= rate at which neutrons are released
n 𝑑 𝑉 𝑑 𝛺ds about (𝒙,𝜴, 𝑠) from fission reactions

(2.14a)

and
[

𝛿(𝑠)∫4𝜋 ∫

∞

0
𝑐𝑠𝑃 (𝜴′ ⋅𝜴)𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′

]

𝑑 𝑉 𝑑 𝛺 𝑑 𝑠

= rate at which neutrons
scatter into 𝑑 𝑉 𝑑 𝛺 𝑑 𝑠 about (𝒙,𝜴, 𝑠).

(2.14b)

Summing Eqs. (2.14), we obtain the rate of gain, i.e.,

Rate of gain of neutrons in 𝑑 𝑉 𝑑 𝛺 𝑑 𝑠 about (𝒙,𝜴, 𝑠) =

𝛿(𝑠)
[

∫4𝜋 ∫

∞

0

𝜈 𝑐𝑓
4𝜋

𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′

+ ∫4𝜋 ∫

∞

0
𝑐𝑠𝑃 (𝜴′ ⋅𝜴)𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′

]

𝑑 𝑉 𝑑 𝛺 𝑑 𝑠.

(2.15)

Substituting Eqs. (2.11) and (2.15) into Eq. (2.7), and dividing the
resulting equation by 𝑑 𝑉 𝑑 𝛺 𝑑 𝑠 we obtain
𝜕
𝜕 𝑠𝛹 (𝒙,𝜴, 𝑠) + 𝛴𝑡(𝜴, 𝑠)𝛹 (𝒙,𝜴, 𝑠) +𝜴 ⋅ ∇𝛹 (𝒙,𝜴, 𝑠) =

(𝑠)
[

∫4𝜋 ∫

∞

0

𝜈 𝑐𝑓
4𝜋

𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′

+ ∫4𝜋 ∫

∞

0
𝑐𝑠𝑃 (𝜴′ ⋅𝜴)𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′

]

.

(2.16)

Finally, dividing the fission term by 𝑘𝑒𝑓 𝑓 in Eq. (2.16) so as to guarantee
the neutron balance, we obtain
𝜕
𝜕 𝑠𝛹 (𝒙,𝜴, 𝑠) + 𝛴𝑡(𝜴, 𝑠)𝛹 (𝒙,𝜴, 𝑠) +𝜴 ⋅ ∇𝛹 (𝒙,𝜴, 𝑠) =

(𝑠)
[

1
𝑘𝑒𝑓 𝑓 ∫4𝜋 ∫

∞

0

𝜈 𝑐𝑓
4𝜋

𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′

+ ∫4𝜋 ∫

∞

0
𝑐𝑠𝑃 (𝜴′ ⋅𝜴)𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′

]

,

(2.17)

that is the 𝑘𝑒𝑙 𝑙-GLBE. Equation (2.17) can be rewritten in equivalent
nitial form, where the delta function 𝛿(𝑠) is not presented. For 𝑠 > 0
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Eq. (2.17) becomes
𝜕
𝜕 𝑠𝛹 (𝒙,𝜴, 𝑠) + 𝛴𝑡(𝜴, 𝑠)𝛹 (𝒙,𝜴, 𝑠) +𝜴 ⋅ ∇𝛹 (𝒙,𝜴, 𝑠) = 0. (2.18a)

Now, applying the operator

lim
𝜉→0∫

𝜉

−𝜉
(⋅) 𝑑 𝑠

on Eq. (2.17) and considering 𝛹 = 0 for 𝑠 < 0 in the resulting equation,
e obtain

𝛹 (𝒙,𝜴, 0) = 1
𝑘𝑒𝑓 𝑓 ∫4𝜋 ∫

∞

0

𝜈 𝑐𝑓
4𝜋

𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺′

+∫4𝜋 ∫

∞

0
𝑐𝑠𝑃 (𝜴′ ⋅𝜴)𝛴𝑡(𝜴′, 𝑠′)𝛹 (𝒙,𝜴′, 𝑠′)𝑑 𝑠′𝑑 𝛺 .

(2.18b)

Equations (2.18) are the initial value form of the 𝑘𝑒𝑓 𝑓 -GLBE. In the next
section we describe a solution scheme for the 𝑘𝑒𝑓 𝑓 -GLBE.

3. A solution technique for the one-dimensional 𝒌𝒆𝒇 𝒇 -GLBE in the
SN formulation

Let us consider the slab-geometry 𝑘𝑒𝑓 𝑓 -GLBE in the SN formula-
tion (Lewis and Miller, 1993) with isotropic scattering. That is,
𝜕
𝜕 𝑠𝛹𝑛(𝑧, 𝑠) + 𝜇𝑛

𝜕
𝜕 𝑧𝛹𝑛(𝑧, 𝑠) + 𝛴𝑡𝑛 (𝑠)𝛹𝑛(𝑧, 𝑠) = 0, (3.1a)

𝛹𝑛(𝑧, 0) =
( 𝜈 𝑐𝑓
𝑘𝑒𝑓 𝑓

+ 𝑐𝑠

) N
∑

𝑛′=1

𝜔𝑛′
2 ∫

∞

0
𝛴𝑡𝑛′ (𝑠

′)𝛹𝑛′ (𝑧, 𝑠′)𝑑 𝑠′, (3.1b)

where 𝜇𝑛 is a discrete direction of flight, such that 𝑛 = 1, 2,… ,N,
with N being the order of the Gauss–Legendre quadrature with weights
𝜔𝑛 (Lewis and Miller, 1993). Moreover, 𝛴𝑡𝑛 (𝑠) = 𝛴𝑡(𝜇𝑛, 𝑠) and 𝛹𝑛(𝑧, 𝑠) =
𝛹 (𝑧, 𝜇𝑛, 𝑠).

3.1. Spectral approach

To deal with the 𝑠-dependence of Eqs. (3.1) we consider the Spectral
Approach (SA) (Vasques et al., 2020). Following the SA, we leverage
the orthogonal properties of the Laguerre polynomials concerning the
inner product (Golderg et al., 1964)

∫

∞

0
𝑒−𝑠𝐿𝑚(𝑠)𝐿𝑚′ (𝑠)𝑑 𝑠 = 𝛿𝑚,𝑚′ , (3.2a)

to write the angular flux as the following truncated Laguerre series

𝛹𝑛(𝑧, 𝑠) = 𝑒− ∫ 𝑠0 𝛴𝑡𝑛 (𝑠
′)𝑑 𝑠′ M

∑

𝑚=0
𝐿𝑚(𝑠)𝜙𝑛,𝑚(𝑧). (3.2b)

In Eqs. (3.2), 𝐿𝑚(𝑠) and 𝐿𝑚′ (𝑠) are the Laguerre polynomials of order 𝑚
and 𝑚′ respectively, 𝛿𝑚,𝑚′ is the Kronecker delta, and M is the truncation
order of the Laguerre series. To represent the angular flux as given in
q. (3.2b) one needs to obtain an expression for the Laguerre moments
𝑛,𝑚(𝑧).

A set of equations for the Laguerre moments can be derived from
qs. (3.1). First, we define the angular flux as

𝛹𝑛(𝑧, 𝑠) = 𝜓𝑛(𝑧, 𝑠)𝑒− ∫ 𝑠0 𝛴𝑡𝑛 (𝑠
′)𝑑 𝑠′ , (3.3)

and substitute Eq. (3.3) into Eqs. (3.1) to obtain
𝜕
𝜕 𝑠𝜓𝑛(𝑧, 𝑠) + 𝜇𝑛

𝜕
𝜕 𝑧𝜓𝑛(𝑧, 𝑠) = 0, (3.4a)

𝜓𝑛(𝑧, 0) =
( 𝜈 𝑐𝑓
𝑘𝑒𝑓 𝑓

+ 𝑐𝑠

) N
∑

𝑛′=1

𝜔𝑛′
2 ∫

∞

0
𝑝𝑛′ (𝑠′)𝜓𝑛′ (𝑧, 𝑠′)𝑑 𝑠′, (3.4b)

where

𝑝𝑛′ (𝑠′) = 𝛴𝑡𝑛′ (𝑠
′)𝑒− ∫ 𝑠

′
0 𝛴𝑡𝑛′ (𝑠

′′)𝑑 𝑠′′ (3.4c)

is the free-path distribution function in the discrete direction 𝜇𝑛′ . Now,
e represent 𝜓𝑛(𝑧, 𝑠) as the following truncated Laguerre series

𝜓𝑛(𝑧, 𝑠) =
M
∑

𝐿𝑚(𝑠)𝜙𝑛,𝑚(𝑧), (3.5)

𝑚=0

4 
where

𝜙𝑛,𝑚(𝑧) = ∫

∞

0
𝑒−𝑠𝐿𝑚(𝑠)𝜓𝑛(𝑧, 𝑠)𝑑 𝑠,

and we substitute Eq. (3.5) into Eqs. (3.4), thus obtaining
M
∑

=0
𝜙𝑛,𝑚(𝑧)

𝑑
𝑑 𝑠𝐿𝑚(𝑠) + 𝜇𝑛

M
∑

𝑚=0
𝐿𝑚(𝑠)

𝑑
𝑑 𝑧𝜙𝑛,𝑚(𝑧) = 0, (3.6a)

M
∑

=0
𝜙𝑛,𝑚(𝑧) =

( 𝜈 𝑐𝑓
𝑘𝑒𝑓 𝑓

+ 𝑐𝑠

) N
∑

𝑛′=1

𝜔𝑛′
2

M
∑

𝑚′=0
𝜙𝑛′ ,𝑚′ (𝑧)𝑛′ ,𝑚′ , (3.6b)

where

𝑛′ ,𝑚′ = ∫

∞

0
𝑝𝑛′ (𝑠′)𝐿𝑚′ (𝑠′)𝑑 𝑠′. (3.6c)

Operating Eq. (3.6a) with ∫ ∞
0 𝑒−𝑠(⋅)𝑑 𝑠, and using that the Laguerre

olynomials satisfy the relation 𝑑
𝑑 𝑠𝐿𝑚(𝑠) =

(

𝑑
𝑑 𝑠 − 1

)

𝐿𝑚−1(𝑠) for 𝑚 >
0 (Golderg et al., 1964), we obtain

𝜇𝑛
𝑑
𝑑 𝑧𝜙𝑛,𝑚(𝑧) =

M
∑

𝑗=𝑚+1
𝜙𝑛,𝑗 (𝑧). (3.7)

The left-hand side of Eq. (3.6b) can be split in a sum of two terms,
one term being the right-hand side of Eq. (3.7), and the other being a
summation of the moments 𝜙𝑛,𝑗 (𝑧) with 𝑗 varying from 0 to 𝑚. Based
on this, we substitute Eq. (3.6b) into Eq. (3.7) to obtain

𝜇𝑛
𝑑
𝑑 𝑧𝜙𝑛,𝑚(𝑧) +

𝑚
∑

𝑗=0
𝜙𝑛,𝑗 (𝑧) =

( 𝜈 𝑐𝑓
𝑘𝑒𝑓 𝑓

+ 𝑐𝑠

) N
∑

𝑛′=1

𝜔𝑛′
2

M
∑

𝑚′=0
𝜙𝑛′ ,𝑚′ (𝑧)𝑛′ ,𝑚′ ,

{

𝑛 = 1, 2,… ,N
𝑚 = 0, 1,… ,M . (3.8)

By using the SA, we can solve nonclassical problems through the so-
lution of a ‘‘classical’’-like system of equations, i.e., Eq. (3.8). Here the
term ‘‘classical’’ is used to emphasize that the solution of Eq. (3.8) is not
xplicitly dependent of the variable 𝑠. The system of equations given

in Eq. (3.8) is suitable for the use of current deterministic numerical
methods, such as the well-known Diamond Difference method (Lewis
nd Miller, 1993), which will be given next.

3.2. Diamond difference method and the source iteration scheme

Let us consider the spatial domain (𝑉 ) as composed of discrete
spatial cells 𝑉𝑖, such that 𝑉 =

⋃𝐼
𝑖=1 𝑉𝑖. Figure 1 illustrates the discretized

spatial domain.
Operating Eq. (3.8) with 1

ℎ𝑖
∫
𝑧𝑖+1∕2
𝑧𝑖−1∕2 (⋅)𝑑 𝑧, we obtain the discretized

spatial balance equation
𝜇𝑛
ℎ𝑖

[

𝜙𝑛,𝑚,𝑖+1∕2 − 𝜙𝑛,𝑚,𝑖−1∕2
]

+
𝑚
∑

𝑗=0
𝜙𝑛,𝑚,𝑖

=
( 𝜈 𝑐𝑓
𝑘𝑒𝑓 𝑓

+ 𝑐𝑠

) N
∑

𝑛′=1

𝜔𝑛′
2

M
∑

𝑚′=0
𝜙𝑛′ ,𝑚′ ,𝑖𝑛′ ,𝑚′ , (3.9)

where 𝜙𝑛,𝑚,𝑖±1∕2 = 𝜙𝑛,𝑚(𝑧𝑖±1∕2) and

𝜙𝑛,𝑚,𝑖 =
1
ℎ𝑖 ∫

𝑧𝑖+1∕2

𝑧𝑖−1∕2
𝜙𝑛,𝑚(𝑧)𝑑 𝑧,

is the cell-average Laguerre moment of order 𝑚. As with the Dia-
ond Difference (DD) numerical method, we approximate 𝜙𝑛,𝑚(𝑧) as
iecewise continuous linear functions across the spatial grid, which is
quivalent to considering

𝜙𝑛,𝑚,𝑖 =
𝜙𝑛,𝑚,𝑖+1∕2 + 𝜙𝑛,𝑚,𝑖−1∕2

2
. (3.10)

By substituting Eq. (3.10) into Eq. (3.9), we obtain two sets of equations
or 𝜇𝑛 > 0 and for 𝜇𝑛 < 0. That is,

𝜙𝑛,𝑚,𝑖+1∕2 =

(

1
2 − 𝜇𝑛

ℎ𝑖

)

𝜙𝑛,𝑚,𝑖−1∕2 −
∑𝑚
𝑗=0 𝜙𝑛,𝑗 ,𝑖 +

(

𝜈 𝑐𝑓
𝑘𝑒𝑓 𝑓 + 𝑐𝑠

)

𝛷𝑖
(

1 + 𝜇𝑛
) , 𝜇𝑛 > 0,
2 ℎ𝑖
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Fig. 1. Discretized spatial domain.
(3.11a)

𝜙𝑛,𝑚,𝑖−1∕2 =

(

1
2 − |𝜇𝑛|

ℎ𝑖

)

𝜙𝑛,𝑚,𝑖+1∕2 −
∑𝑚
𝑗=0 𝜙𝑛,𝑗 ,𝑖 +

(

𝜈 𝑐𝑓
𝑘𝑒𝑓 𝑓 + 𝑐𝑠

)

𝛷𝑖
(

1
2 + |𝜇𝑛|

ℎ𝑖

) , 𝜇𝑛 < 0,

(3.11b)

where we have defined

𝛷𝑖 =
N
∑

𝑛′=1

𝜔𝑛′
2

M
∑

𝑚′=0
𝜙𝑛′ ,𝑚′ ,𝑖𝑛′ ,𝑚′ . (3.11c)

Equations (3.11) are the nonclassical SN sweeping equations. We set
𝑚 = 0 and use Eq. (3.11a) to sweep from left to right (𝜇𝑛 > 0)
and Eq. (3.11b) to sweep from right to left (𝜇𝑛 < 0), updating in
each sweep the values of 𝜙𝑛,𝑚,𝑖. We follow this sweeping process from
𝑚 = 0 to 𝑚 = M. Once all full values of 𝜙𝑛,𝑚,𝑖 are calculated, we
update function 𝛷𝑖 (Eq. (3.11c)), and restart the sweeping process.
This procedure is executed until the relative deviation between two
consecutive estimates of Eq. (3.11c), for each value of 𝑖, is smaller
than or equal to a prescribed positive number 𝜉. In other words, the
sweeping process is executed until
|

|

|

𝛷(𝓁+1)
𝑖 −𝛷(𝓁)

𝑖
|

|

|

𝛷(𝓁+1)
𝑖

≤ 𝜉 , 𝑖 = 1, 2,… , 𝐼 ,

where the superscripts 𝓁 and 𝓁 + 1 indicate two consecutive estimates
of 𝛷𝑖. By using Eq. (3.2) together with Eqs. (3.11), we obtain numerical
results for the 𝑘𝑒𝑓 𝑓 -GLBE (Eqs. (3.1)) for a given estimate of 𝑘𝑒𝑓 𝑓 in the
power iteration method (Booth, 2006; Prinja and Larsen, 2010; Lewis
and Miller, 1993).

3.3. Estimation of 𝑘𝑒𝑓 𝑓

Multiplication eigenvalue problems are traditionally solved by the
method of power iteration (Alvim, 2007). Upon convergence, it is
expected that

1
𝑘(𝓁

⋆+1)
𝑒𝑓 𝑓

 (𝓁⋆+1) = 1
𝑘(𝓁

⋆)
𝑒𝑓 𝑓

 (𝓁⋆), 𝓁⋆ = 0, 1, 2,… , (3.12a)

where we have defined

 (𝓁⋆) = 𝜈 𝑐𝑓
𝐼
∑

𝑖=1

N
∑

𝑛=1

M
∑

𝑚=0
𝜔𝑛𝜙

(𝓁⋆)
𝑛,𝑚,𝑖𝑛,𝑚. (3.12b)

In Eqs. (3.12), the superscript (𝓁⋆ + 1) in  (𝓁⋆+1) indicates that 𝜙
(𝓁⋆+1)
𝑛,𝑚,𝑖

is the converged cell-average Laguerre moment for 𝑘𝑒𝑓 𝑓 = 𝑘(𝓁
⋆)

𝑒𝑓 𝑓 in
Eqs. (3.11).

To estimate the value of 𝑘(1)𝑒𝑓 𝑓 we make initial guesses for 𝑘(0)𝑒𝑓 𝑓 and
 (0); then, we execute the sweeping process described in Section 3.2
with 𝑘𝑒𝑓 𝑓 = 𝑘(0)𝑒𝑓 𝑓 in order to evaluate  (1). Then, we use 𝑘(0)𝑒𝑓 𝑓 ,  (0)

and  (1) to calculate the new estimate for 𝑘𝑒𝑓 𝑓 , i.e., 𝑘(1)𝑒𝑓 𝑓 through
Eq. (3.12a). This procedure continues until the stop criterion
|

|

|

𝑘(𝓁
⋆+1)

𝑒𝑓 𝑓 − 𝑘(𝓁
⋆)

𝑒𝑓 𝑓
|

|

|

𝑘(𝓁
⋆+1)

𝑒𝑓 𝑓
≤ 𝜌, 𝓁⋆ = 0, 1, 2,… , (3.13)

is satisfied, with 𝜌 being a positive number.
5 
4. Numerical results

In this section, we present numerical results for two different model
problems. In the first model problem, we focus our attention on the
estimate of 𝑘𝑒𝑓 𝑓 in a classical transport problem, making use of the
mathematical model and solution process described in this work. The
point of considering a classical problem is to analyze the accuracy of
the solution process. As will be shown later in this section, the 𝑘𝑒𝑓 𝑓 -
GLBE can be reduced to the linear Boltzmann equation for eigenvalue
problems (𝑘𝑒𝑓 𝑓 -LBE) (Lewis and Miller, 1993) when 𝛴𝑡(𝜇 , 𝑠) = 𝛴𝑡. The
𝑘𝑒𝑓 𝑓 -LBE is shown next

𝜇 𝜕
𝜕 𝑧𝛹

𝑐 (𝑧, 𝜇) + 𝛴𝑡𝛹 𝑐 (𝑧, 𝜇) = 1
2

( 𝜈 𝛴𝑓
𝑘𝑒𝑓 𝑓

+ 𝛴𝑠

)

∫

1

−1
𝛹 𝑐 (𝑧, 𝜇′)𝑑 𝜇′, (4.1)

where 𝛹 𝑐 is the classical neutron angular flux, and 𝛴𝑠 and 𝛴𝑓 are
the scattering and fission macroscopic cross-sections respectively. As
the 𝑘𝑒𝑓 𝑓 -GLBE can be reduced to the 𝑘𝑒𝑓 𝑓 -LBE, highly accurate results
are expected for classical transport problems through the solution of
Eqs. (3.1), thus ensuring the accuracy of the solution process.

After analyzing the accuracy of the solution process, we consider
a nonclassical transport problem in model-problem II to examine the
accuracy of the solution generated using the nonclassical model. To
compare the results generated by the nonclassical model, we solve the
same nonclassical problem by making use of the direct method. That is,
a sufficient number of physical realizations of the system is generated,
and the 𝑘𝑒𝑓 𝑓 and the profile of the classical neutron scalar flux are
calculated for each physical realization through the solution of the
𝑘𝑒𝑓 𝑓 -LBE. The expected value of 𝑘𝑒𝑓 𝑓 and the expected profile of the
neutron scalar flux are calculated through the average of the solutions
generated in each physical realization.

For all numerical experiments we consider 𝜉 = 𝜌 = 1 × 10−7 for the
stopping criteria. Moreover, we adopt 𝑁 = 20 in the SN formulation,
M = 100 in the expansion of the angular flux as a Laguerre series, and
we discretize the spatial domain such that ℎ𝑖 = 0.01 𝑐 𝑚 for 𝑖 = 1 ∶ 𝐼 .

4.1. Model-problem I

In the first model problem, we consider a classical transport problem
with size 𝑍 = 30 cm. To model this problem, we consider the total cross-
section uniform concerning variables 𝜇 and 𝑠. In this case, the function
𝑛′ ,𝑚′ (Eq. (3.6c)) is reduced to
𝑛′ ,𝑚′ = 𝛴𝑡 ∫

∞

0
𝑒−𝛴𝑡𝑠

′
𝐿𝑚′ (𝑠′)𝑑 𝑠′. (4.2)

Substituting the representation for the Laguerre polynomials (Golderg
et al., 1964)

𝐿𝑚′ (𝑠′) =
𝑚′
∑

𝑗=0
(−1)𝑗

(

𝑚′

𝑗

)

𝑠′𝑗

𝑗!

into Eq. (4.2), and considering the result

∫

∞

0
𝑒−𝑠𝑠′

𝑗
𝑑 𝑠′ = 𝑗!,

we write

𝑛′ ,𝑚′ =
𝑚′
∑

𝑗=0

(

−1
𝛴𝑡

)𝑗 (𝑚′

𝑗

)

. (4.3a)

Equation (4.3a) can be rewritten using the binomial theorem as (Yang,
2017)

 ′ ′ =
(

1 − 1
)𝑚′

. (4.3b)
𝑛 ,𝑚 𝛴𝑡



L.R.C. Moraes et al.

𝜈
s
w
a
e
a
t

E

E

t

a

a
t

Annals of Nuclear Energy 216 (2025) 111250 
Table 1
𝑘𝑒𝑓 𝑓 and profile of the classical neutron scalar flux for model-problem I.

Material parameters 𝑘𝑒𝑓 𝑓 Profile of the classical particle fluxa

𝛴𝑡 = 0.5
𝑐𝑠 = 0.2 𝜈 𝑐𝑓 = 0.1 0.123136 (−1.31E−07c) 𝑧 b = 0 𝑧 = 5 𝑧 = 10 𝑧 = 15

0.025955 (−4.85E−06d) 0.137132 (−4.74E−05) 0.211584 (−1.76E−06) 0.238399 (−1.98E−06)
𝜈 𝑐𝑓 = 0.6 0.738815 (−1.30E−07)

𝑐𝑠 = 0.5 𝜈 𝑐𝑓 = 0.1 0.195270 (−1.97E−07) 0.041158 (−5.41E−06) 0.217458 (−4.77E−05) 0.335534 (−1.75E−06) 0.378050 (−1.83E−06)
𝜈 𝑐𝑓 = 0.6 1.171622 (−1.97E−07)

𝛴𝑡 = 1.3
𝑐𝑠 = 0.1 𝜈 𝑐𝑓 = 0.1 0.110863 (−3.52E−08) 0.003864 (−3.16E−06) 0.045948 (−2.58E−06) 0.075514 (7.20E−07) 0.086218 (2.34E−06)

𝜈 𝑐𝑓 = 0.3 0.332588 (−3.52E−08)

𝑐𝑠 = 0.7 𝜈 𝑐𝑓 = 0.1 0.331113 (8.65E−09) 0.011544 (−4.03E−06) 0.137051 (−2.45E−06) 0.225614 (6.85E−07) 0.257802 (2.21E−06)
𝜈 𝑐𝑓 = 0.3 0.993340 (8.65E−09)

𝛴𝑡 = 3
𝑐𝑠 = 0.3 𝜈 𝑐𝑓 = 0.2 0.285547 (−9.01E−08) 0.001012 (−8.29E−05) 0.025834 (−2.81E−05) 0.042473 (1.27E−06) 0.049107 (4.88E−06)

𝜈 𝑐𝑓 = 0.35 0.499708 (−9.01E−08)

𝑐𝑠 = 0.6 𝜈 𝑐𝑓 = 0.2 0.499502 (−1.24E−07) 0.001725 (4.50E−05) 0.044478 (2.13E−05) 0.074569 (−8.97E−06) 0.085297 (−3.83E−05)
𝜈 𝑐𝑓 = 0.35 0.874129 (−1.24E−07)

a The classical neutron scalar flux is generated through the nonclassical solution as 𝛷𝑐 (𝑧) = ∫ 1
−1 ∫

∞
0 𝛹 (𝑧, 𝜇 , 𝑠)𝑑 𝑠 𝑑 𝜇 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠∕𝑐 𝑚2𝑠.

b Since this is a symmetric problem, 𝑧 = 𝑎 𝑐 𝑚 represents the profile of the classical scalar flux at 𝑧 = 𝑎 𝑐 𝑚 and 𝑧 = 30 − 𝑎 𝑐 𝑚.
c The relative deviation of 𝑘𝑒𝑓 𝑓 generated by Eqs. (3.1) and (4.1).
d The relative deviation of the profile of the classical neutron scalar flux generated by Eqs. (3.1) and (4.1).
𝛴

c

a

p

Once the function 𝑛′ ,𝑚′ is calculated, we use the nonclassical
formulation to solve different classical problems, varying 𝛴𝑡, 𝑐𝑠 and
 𝑐𝑓 . Table 1 presents the multiplication factor 𝑘𝑒𝑓 𝑓 as generated by the
olution of Eqs. (3.1) and by the solution of Eq. (4.1). To solve Eq. (4.1)
e use the SN formulation and the DD method to deal with the angular
nd spatial variables, respectively, and the power iteration method to
stimate 𝑘𝑒𝑓 𝑓 . The values for the stopping criterion, quadrature order,
nd the number of discretization nodes are considered the same as in
he solution of Eqs. (3.1). Furthermore, Table 1 and Fig. 2 present the

profile of the classical scalar flux in some points of the spatial domain.
At this point, we remark that using the same methods to solve both

qs. (3.1) and (4.1) does not impose any concerning the validity of
the generated results. The methods used to solve Eq. (4.1) have been
used over decades in the nuclear engineering area to calculate 𝑘𝑒𝑓 𝑓 ,
always showing good accuracy when compared to results generated
by other methods, such as the Response Matrix method (da Silva
et al., 2020; Moraes et al., 2020a,b, 2023a) and the Spectral Green’s
Function method (Menezes et al., 2013; de Abreu et al., 1996; Barros
et al., 2003). The results generated using these methods have been
used as benchmarks in several different articles. Therefore, by solving
q. (4.1) using these methods we expected to obtain the exact results

for 𝑘𝑒𝑓 𝑓 and the profile of scalar flux within the precision defined by
he stopping criteria.

As we can see from Table 1 and Fig. 2, the results generated by
the nonclassical model were highly accurate for classical transport
problems. All estimations of 𝑘𝑒𝑓 𝑓 generated by the solution of Eqs. (3.1)
gree up to 7 digits of precision (comparable with the stopping criteria)

with the results generated by the solution of Eq. (4.1), while the
profile of the scalar flux agrees at least 5 digits of precision (a slight
loss of precision compared to the stopping criterion). This is a strong
indication that the solution process described in Section 3 is adequate
to generate very accurate results. We remark that the accuracy of the
generated solution depends not only on the solution process but also on
the right consideration of the homogenized total-cross section 𝛴𝑡(𝜇 , 𝑠).

As briefly stated in the beginning of this section, these highly
ccurate results were in fact expected, since Eqs. (3.1) can be reduced
o Eq. (4.1). Considering 𝛴𝑡(𝜇 , 𝑠) = 𝛴𝑡 in Eqs. (3.1), and then operating

the resulting equation by ∫ ∞
0 (⋅)𝑑 𝑠 we obtain

𝛹𝑛(𝑧, 0) + 𝜇𝑛 𝑑𝑑 𝑧𝛹
𝑐
𝑛 (𝑧) + 𝛴𝑡𝛹 𝑐𝑛 (𝑧) = 0, (4.4)

where the classical neutron angular flux is defined as
 f

6 
𝛹 𝑐𝑛 (𝑧) = ∫

∞

0
𝛹𝑛(𝑧, 𝑠)𝑑 𝑠.

Substituting Eq. (3.1b) into Eq. (4.4) we obtain

𝜇𝑛
𝑑
𝑑 𝑧𝛹

𝑐
𝑛 (𝑧) + 𝛴𝑡𝛹 𝑐𝑛 (𝑧) =

1
2

( 𝜈 𝛴𝑓
𝑘𝑒𝑓 𝑓

+ 𝛴𝑠

) N
∑

𝑛′=1
𝜔𝑛′𝛹

𝑐
𝑛′ (𝑧), (4.5)

which is the 𝑘𝑒𝑓 𝑓 -LBE in the SN formulation. In Eq. (4.5) 𝛴𝑠 = 𝛴𝑡 𝑐𝑠 and
𝑓 = 𝛴𝑡 𝑐𝑓 .

4.2. Model-problem II

In the second model problem, we consider a stochastic problem
onstituted of two materials of length 𝓁 that are periodically arranged

in the infinite line −∞ < 𝑧 <∞, as illustrated in Fig. 3.
The total macroscopic cross-section of material 1 is 𝛴𝑡 = 𝛴𝑡1 𝑐 𝑚−1

nd for material 2 is 𝛴𝑡2 = 0 (void). We have opted to consider this
nonclassical problem due to the fact that the free-path distribution
function (Eq. (3.4c)) can be analytically calculated in this case. The
function 𝑝𝑛′ (𝑠′) for this problem is

𝑝𝑛′ (𝑠′) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛴𝑡1
𝓁

[

𝓁(2𝑑 + 1) − 𝑠′|𝜇𝑛′ |
]

𝑒
−𝛴𝑡1

(

𝑠′− 𝑑𝓁
|𝜇𝑛′ |

)

,
if 2𝑑𝓁 ≤ 𝑠′|𝜇𝑛′ | ≤ (2𝑑 + 1)𝓁
𝛴𝑡1
𝓁

[

𝑠′|𝜇𝑛′ | − 𝓁(2𝑑 + 1)] 𝑒−𝛴𝑡1
(

𝑠′− (𝑑+1)𝓁
|𝜇𝑛′ |

)

,
if (2𝑑 + 1)𝓁 ≤ 𝑠′|𝜇𝑛′ | ≤ 2(𝑑 + 1)𝓁

, (4.6)

where 𝑑 = 0, 1, 2,… . Details about the constitution of Eq. (4.6) can be
found in Vasques et al. (2020, 2017).

The calculation of function 𝑛′ ,𝑚′ is a complicated task in this
roblem given the constitution of the function 𝑝𝑛′ (𝑠′). Thus, we use

a numerical approach to calculate function 𝑛′ ,𝑚′ . In this numerical
approach, we first truncate the upper limit of variable 𝑠′ to a finite
number 𝑆 in Eq. (3.6c) and neglect the integral in the complementary
range (𝑆 ,∞). Then, we consider the simple transformation 𝑞 = 2

𝑆 𝑠
′ − 1

in the resulting integral, which changes the interval of integration from
[0, 𝑆] to [−1, 1]. Finally, we use the Gauss–Legendre quadrature formula
to obtain

𝑛′ ,𝑚′ ≈ 𝑆
2

𝐺𝓁
∑

𝑘=1
𝑝𝑛′

(𝑆
2
(

𝑞𝑘 + 1)
)

𝐿𝑚′

(𝑆
2
(

𝑞𝑘 + 1)
)

𝜔𝑘, (4.7)

where 𝑞𝑘 and 𝜔𝑘 are, respectively, the nodes and weights of the Gauss–
Legendre angular quadrature of order 𝐺𝓁. As the calculation of the

unction 𝑛′ ,𝑚′ is essential to the generation of accurate results for 𝑘𝑒𝑓 𝑓
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Fig. 2. Profile of the classical particle flux of model-problem I.

Fig. 3. Model-problem II: One-dimensional random periodic media.
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Fig. 4. Convergence of functions 𝑛′ ,𝑚′ for model-problem II.
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and the profile of the classical scalar flux following the solution process
iven in Section 3, we consider a high value for 𝐺𝓁 = 6000.

After we have defined a procedure to calculate functions 𝑛′ ,𝑚′ for
this nonclassical problem, we use the procedure described in Section 3
to calculate 𝑘𝑒𝑓 𝑓 . We perform numerical experiments for different
values of 𝑍, 𝛴𝑡1 , 𝑐𝑠 and 𝜈 𝑐𝑓 , and compare the results with the results
generated by the direct method as can be seen in Table 2 and Fig. 5.
The solution generated by the direct method is the average of the
solutions of the 𝑘𝑒𝑓 𝑓 -LBE for 1000 classical transport problems varying
the problem’s configuration accordingly (Vasques et al., 2017).

As with the results displayed in Table 2 and Fig. 5 we have con-
sidered 𝑆 = 200 cm in Eq. (4.7) to approximate functions 𝑛′ ,𝑚′ . By
using Eq. (4.7) to calculate functions 𝑛′ ,𝑚′ , it is important to make
ure that the function 𝑝𝑛′ (𝑠)𝐿𝑚′ (𝑠) converges for all possible values of
𝑛′ and 𝑚′, and to chose 𝑆 such that the integral in the complementary
range [𝑆 ,∞] is close to zero. To visualize these features, we display
in Fig. 4 the profile of function 𝑝𝑛′ (𝑠)𝐿𝑚′ (𝑠) considering 𝜇1 = 0.993126,
𝜇20 = −0.076526, 𝑚′ = 100, and 𝑆 ≤ 200 cm for the cases 𝛴𝑡1 = 1.3 cm−1

nd 𝛴𝑡1 = 2.5 cm−1. Here, 𝜇1 and 𝜇20 are the discrete directions with
aximum and minimum absolute value, respectively, and 𝐿100(𝑠) is the

Laguerre polynomial of maximum order.
Analyzing Fig. 4, we can notice that the functions 𝑝1(𝑠)𝐿100(𝑠) and

20(𝑠)𝐿100(𝑠) go to zero with the increase of 𝑠, which indicates that
the improper integral presented in Eq. (3.6c) converges for the 𝑝𝑛′ (𝑠)
displayed in Eq. (4.6) with 𝛴𝑡1 = 1.3 cm−1 and 𝛴𝑡1 = 2.5 cm−1. Moreover,
these functions go to zero quickly with the increase of 𝑠. We chose
𝑆 = 200 cm due to the fact that functions 𝑝1(𝑠)𝐿100(𝑠) and 𝑝20(𝑠)𝐿100(𝑠)
with 𝛴𝑡1 = 1.3 cm−1 and 𝛴𝑡1 = 2.5 cm−1 are smaller than 1 × 10−15 (double
precision digits) from now on.
8 
As we can notice from Table 2, the nonclassical formulation has
generated results for 𝑘𝑒𝑓 𝑓 that agree from 2 to 5 decimal places with
the expected value of 𝑘𝑒𝑓 𝑓 generated by the direct method. The value of
𝑘𝑒𝑓 𝑓 generated by the solution of Eqs. (3.1) with functions 𝑛′ ,𝑚′ given
in Eq. (4.7) slightly underestimates the expected value of 𝑘𝑒𝑓 𝑓 . More-
over, the estimate of 𝑘𝑒𝑓 𝑓 becomes more accurate with the increase of
the size of the domain (𝑍).

To explain these results, let us analyze Fig. 5. As we can see, the
rofile of the classical neutron scalar flux becomes more accurate near
he center of the domain, while its accuracy deteriorates near the

boundaries. In the derivation of Eqs. (2.18) and in the calculation of
functions 𝑝𝑛′ (𝑠′), the system is considered infinite. Therefore, a loss of
precision near the boundaries is expected, since we are dealing with
finite problems. However, neutrons that migrate more deeply within in
the system are more important to the constitution of 𝑘𝑒𝑓 𝑓 than neutrons
that migrate closer to the boundaries. The neutrons that are close to the
oundaries have a higher probability of leaking out of the system, thus

not contributing significantly to new fission events. Therefore, neutrons
that migrate near the boundaries and contribute to fission events is
significantly smaller than the neutrons that migrate more deeply within
the system. Thus, although we lose some precision near boundaries,

hich could considerably decrease the accuracy of 𝑘𝑒𝑓 𝑓 , the fact that
hese neutrons do not contribute significantly to the estimate of 𝑘𝑒𝑓 𝑓

ensures that 𝑘𝑒𝑓 𝑓 can be accurately calculated using the nonclassical
formulation as presented in this paper.

This argument can also be applied to explain the improvement in
the estimation of 𝑘𝑒𝑓 𝑓 with the increase of the size of the domain.

hen we increase the size of the domain, considering the same cross-
section, we decrease the number of particles near the boundaries. Thus,
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Table 2
𝑘𝑒𝑓 𝑓 and profile of the classical neutron scalar flux for model-problem II.

Domain size Material 𝑘𝑒𝑓 𝑓 Profile of the classical particle fluxa

parameters 𝑧 = 0b 𝑧 = 4 𝑧 = 8 𝑧 = 10

𝑍 = 20
𝛴𝑡 = 1.3

𝑐𝑠 = 0.1 𝜈 𝑐𝑓 = 0.1 0.109063 (−1.34E−03c ) 0.033196 (1.01E−01d ) 0.158880 (−2.28E−03) 0.230601 (−5.97E−03) 0.240122 (−6.30E−03)
𝜈 𝑐𝑓 = 0.3 0.327188 (−1.34E−03)

𝑐𝑠 = 0.7 𝜈 𝑐𝑓 = 0.1 0.315555 (−3.86E−03) 0.096044 (9.90E−02) 0.459686 (−4.83E−03) 0.667215 (−8.49E−03) 0.694764 (−8.82E−03)
𝜈 𝑐𝑓 = 0.3 0.946665 (−3.86E−03)

𝛴𝑡 = 2.5
𝑐𝑠 = 0.1 𝜈 𝑐𝑓 = 0.1 0.110400 (−1.21E−03) 0.011713 (−2.31E−01) 0.082774 (−1.35E−03) 0.124942 (−1.03E−02) 0.130570 (−1.11E−02)

𝜈 𝑐𝑓 = 0.3 0.331202 (−1.21E−03)

𝑐𝑠 = 0.7 𝜈 𝑐𝑓 = 0.1 0.327022 (−3.58E−03) 0.034686 (−2.29E−01) 0.245162 (−3.84E−03) 0.370135 (−1.26E−02) 0.386821 (−1.34E−02)
𝜈 𝑐𝑓 = 0.3 0.981067 (−3.58E−03)

𝑧 = 0 𝑧 = 10 𝑧 = 20 𝑧 = 25

𝑍 = 50
𝛴𝑡 = 1.3

𝑐𝑠 = 0.1 𝜈 𝑐𝑓 = 0.1 0.110731 (−2.62E−04) 0.006128 (1.06E−01) 0.063702 (2.67E−04) 0.098009 (−2.29E−03) 0.102594 (−1.98E−03)
𝜈 𝑐𝑓 = 0.3 0.332193 (−2.62E−04)

𝑐𝑠 = 0.7 𝜈 𝑐𝑓 = 0.1 0.329939 (−7.71E−04) 0.018241 (1.04E−01) 0.189730 (−6.62E−04) 0.292137 (−2.44E−03) 0.305844 (−2.00E−03)
𝜈 𝑐𝑓 = 0.3 0.989817 (−7.71E−04)

𝛴𝑡 = 2.5
𝑐𝑠 = 0.1 𝜈 𝑐𝑓 = 0.1 0.110986 (−2.31E−04) 0.002053 (2.46E−01) 0.033173 (4.87E−03) 0.051666 (−7.34E−03) 0.054110 (−8.46E−03)

𝜈 𝑐𝑓 = 0.3 0.332958 (−2.31E−04)

𝑐𝑠 = 0.7 𝜈 𝑐𝑓 = 0.1 0.332222 (−6.62E−04) 0.006089 (2.39E−01) 0.098896 (3.97E−04) 0.155168 (−4.45E−03) 0.162708 (−4.31E−03)
𝜈 𝑐𝑓 = 0.3 0.996665 (−6.62E−04)

𝑧 = 0 𝑧 = 20 𝑧 = 40 𝑧 = 50

𝑍 = 100
𝛴𝑡 = 1.3

𝑐𝑠 = 0.1 𝜈 𝑐𝑓 = 0.1 0.111010 (−8.48E−05) 0.001629 (1.20E−01) 0.031964 (7.14E−03) 0.049754 (−6.62E−03) 0.052084 (−8.89E−03)
𝜈 𝑐𝑓 = 0.3 0.333029 (−8.48E−05)

𝑐𝑠 = 0.7 𝜈 𝑐𝑓 = 0.1 0.332436 (−2.17E−04) 0.004810 (1.07E−01) 0.095117 (7.03E−04) 0.149758 (−1.62E−03) 0.157076 (−1.94E−03)
𝜈 𝑐𝑓 = 0.3 0.997308 (−2.17E−04)

𝛴𝑡 = 2.5
𝑐𝑠 = 0.1 𝜈 𝑐𝑓 = 0.1 0.111074 (−1.01E−04) 0.000599 (3.39E−01) 0.017565 (6.27E−02) 0.024879 (−5.67E−02) 0.025595 (−7.87E−02)

𝜈 𝑐𝑓 = 0.3 0.333223 (−1.01E−04)

𝑐𝑠 = 0.7 𝜈 𝑐𝑓 = 0.1 0.333041 (−1.91E−04) 0.001591 (2.54E−01) 0.049776 (8.13E−03) 0.078199 (−8.08E−03) 0.081917 (−1.07E−02)
𝜈 𝑐𝑓 = 0.3 0.999123 (−1.91E−04)

a The classical neutron scalar flux is generated through the nonclassical solution as 𝛷𝑐 (𝑧) = ∫ 1
−1 ∫

∞
0 𝛹 (𝑧, 𝜇 , 𝑠)𝑑 𝑠 𝑑 𝜇 𝑛𝑒𝑢𝑡𝑟𝑜𝑛𝑠∕𝑐 𝑚2𝑠.

b Since this is a symmetric problem 𝑧 = 𝑎 𝑐 𝑚 represents the profile of the classical scalar flux at 𝑧 = 𝑎 𝑐 𝑚 and 𝑧 = 𝑍 − 𝑎 𝑐 𝑚.
c The relative deviation of 𝑘𝑒𝑓 𝑓 generated by Eqs. Eq. (3.1) and (4.1).
d The relative deviation of the profile of the classical neutron scalar flux generated by Eq. (3.1) and (4.1).
a
s

neutrons that migrating near the boundaries possess less influence on
the calculation of 𝑘𝑒𝑓 𝑓 , thus increasing its accuracy. Analyzing Table 2
we can see that the most accurate results for 𝑘𝑒𝑓 𝑓 are generated for
problems whose profile of the classical neutron flux is smaller at the
boundaries.

The consideration of an infinite system in the calculation of func-
ions 𝑝𝑛′ (𝑠′) can also be used to explain the underestimation of the 𝑘𝑒𝑓 𝑓

coefficient generated by the solution of Eqs. (3.1). To visualize this
relation, let us first introduce the well-known expression for the particle
mean free path (MFP), i.e., the average distance the particle travels
between collisions with other moving particles (background material).
That is,
⟨𝑠𝑛′ ⟩ = ∫

∞

0
𝑠′𝑝𝑛′ (𝑠′)𝑑 𝑠′. (4.8a)

In the case of the 𝑝𝑛′ (𝑠′) function as given in Eq. (4.6), Eq. (4.8a)
ecomes

⟨𝑠𝑛′ ⟩ = ⟨𝑠⟩ = 2
𝛴𝑡1

. (4.8b)

As in the calculation of functions 𝑝𝑛′ (𝑠′) the system was considered
infinite, it is possible for the functions 𝑝𝑛′ (𝑠′) to assume values different
than zero for distances (𝑧 = 𝜇𝑛𝑠) greater than the domain size 𝑍.

egarding finite systems, the function 𝑝𝑛′ (𝑠′) should be zero for such
istances since the particle will no longer be in the system, then
he probability of its collision is zero. The fact that 𝑝𝑛′ (𝑠′) can be

ifferent than zero for distances greater than 𝑍 increases the particle

9 
MFP (Eq. (4.8a)). In this case, particles will migrate larger distances
between collisions. That decreases the average number of collisions in
the system and increases the probability of a particle leaking out. We
remark that although the probability of a particle leaking out of the
system increases, this does not necessarily mean that a larger number
of particles will leak out of the system in the case of a longer MFP.
As the number of particles near the boundaries decreases due to a
smaller number of fission events, the actual number of particles leaking
out of the system may decrease for a larger MPF, despite their higher
probability of leaking out.

The decrease in the number of collisions in the system may lead to
 change in the constitution of the effective multiplication factor of the
ystem. Let us consider,

𝑘1𝑒𝑓 𝑓 = 𝑋
𝑌
, (4.9a)

as the 𝑘𝑒𝑓 𝑓 coefficient considering the right 𝑝𝑛′ (𝑠′). In Eq. (4.9a) 𝑋 and
𝑌 are the number of neutrons generated through fission in two consec-
utive generations. Now, we assume a different 𝑝𝑛′ (𝑠′) that increases the
particle MFP, for example, considering the system as infinite. We also
assume that this higher MFP leads to a decrease (𝐷 > 0) in the number
of neutrons generated through fission. To represent this situation, we
subtract 𝐷 of both 𝑋 and 𝑌 in Eq. (4.9a), thus obtaining

𝑘2𝑒𝑓 𝑓 = 𝑋 −𝐷
𝑌 −𝐷

= 𝑋
𝑌 −𝐷

− 𝐷
𝑌 −𝐷

. (4.9b)

Equation (4.9b) is an estimate of the 𝑘𝑒𝑓 𝑓 coefficient for the 𝑝𝑛′ (𝑠′) with
a higher MFP. If we multiply Eq. (4.9a) by 𝑌−𝐷 , and Eq. (4.9b) by 𝑌
𝑌−𝐷 𝑌
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Fig. 5. Profile of the classical particle flux of model-problem II.
we obtain

𝑘1𝑒𝑓 𝑓 = 𝑋 𝑌
(𝑌 −𝐷) 𝑌

− 𝑋 𝐷
(𝑌 −𝐷) 𝑌

, (4.10a)

and

𝑘2𝑒𝑓 𝑓 = 𝑋 𝑌
(𝑌 −𝐷) 𝑌

− 𝑌 𝐷
(𝑌 −𝐷) 𝑌

, (4.10b)

If the system is subcritical, it means that 𝑌 > 𝑋. Comparing Eq. (4.10a)
o Eq. (4.10b), we can notice that in the case of subcritical system
10 
𝑘2𝑒𝑓 𝑓 < 𝑘1𝑒𝑓 𝑓 . Therefore, the 𝑘𝑒𝑓 𝑓 coefficient for the case where 𝑝𝑛′ (𝑠′)
overestimate the MFP is an underestimate of the 𝑘𝑒𝑓 𝑓 coefficient for
the right 𝑝𝑛′ (𝑠′). This idea can be used to explain the underestimating
results presented in Table 2. At this point, we remark that the consider-
ation of a 𝑝𝑛′ (𝑠′) that overestimates the MFP does not necessarily lead to
a value 𝐷 > 0 since both the number of collisions and particle leakage
may decrease.
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5. Concluding remarks

In this work, we derived a nonclassical transport equation to eigen-
value calculations (𝑘𝑒𝑓 𝑓 -GLBE). This derivation follows the idea of
extending the phase-space of the total macroscopic cross-section to
include the variables 𝜴 (particle’s direction of flight) and 𝑠 (distance
traveled by the particle since its last interaction). It is demonstrated
in Section 2 that this extension allows the mathematical modeling of
ransport problems where the flux of particles is not exponentially at-

tenuated. The 𝑘𝑒𝑓 𝑓 -GLBE is reduced to the classical transport equation,
amely the linear Boltzmann equation, for eigenvalue calculations if

classical transport takes place, as shown in the previous section.
To analyze the accuracy of the results generated through the so-

ution of the 𝑘𝑒𝑓 𝑓 -GLBE, we present numerical experiments for two
one-dimensional model problems. In the first model problem, we con-
sider a classical transport problem with the aim of examining the
accuracy of the solution methodology described in Section 3. In model
roblem II, we consider the transport of neutrons in a random periodic
edia to analyze the accuracy of the derived nonclassical model. The

esults presented in the previous section indicate that the mathematical
odel derived in this work can generate accurate results for 𝑘𝑒𝑓 𝑓 in
onclassical transport problems. The profile of the classical neutron
calar flux can also be calculated accurately (comparable to 𝑘𝑒𝑓 𝑓 ),
lthough some precision near the problem’s boundaries is lost. The
ssumption of an infinite system considered in the derivation of the
𝑒𝑓 𝑓 -GLBE is one of the reasons for the behavior of the scalar flux
rofile. Thus, for nonclassical transport problems where the scalar flux
rofile needs to be calculated accurately in the whole domain, the
ssumption of a finite system in the derivation of the 𝑘𝑒𝑓 𝑓 -GLBE should
e considered. This is a subject for future work.

Another factor that has contributed to the loss of precision in the
esults generated in the second model problem of the previous section

is the determination of functions 𝑝𝑛′ (𝑠′), and hence the constitution of
he homogenized cross-section

𝛴𝑡(𝜇 , 𝑠) =
𝑝(𝜇 , 𝑠)

1 − ∫ 𝑠0 𝑝(𝜇 , 𝑠′)𝑑 𝑠′
.

In the derivation of the 𝑘𝑒𝑓 𝑓 -GLBE, the true cross-section of the problem
is replaced by a homogenized cross-section. Therefore, it is important
iven a nonclassical problem to consider a homogenized cross-section
hat can accurately portray the main characteristics of the problem.
his importance is exemplified in the model problem I. In the model
roblem I, we have considered the homogenized cross-section as the
rue cross-section of the problem, which has led to the generation
f highly accurate results for both 𝑘𝑒𝑓 𝑓 and the profile of the scalar
lux. Generating cross sections that accurately capture the statistical
ehavior of the medium in nonclassical transport problems of practical
elevance is crucial and should be addressed in future work.

The constitution of the function 𝑝𝑛′ (𝑠′) can also impose numerical
challenges concerning the method used to deal with the variable 𝑠.

egarding the Spectral Approach, the precise determination of the
function 𝑛′ ,𝑚′ is required to generate accurate results. However, de-
pending on the constitution of 𝑝𝑛′ (𝑠′), the task of finding the analytical
solution of the improper integral of Eq. (3.6c) is difficult (if not im-
ossible), which foments the use of numerical methods to approximate
his integral. By using numerical methods, we approximate the im-

proper integral through the sum of the function 𝑝𝑛′ (𝑠′)𝐿𝑚′ (𝑠′) in some
specified points. For nonclassical problems where 𝑝𝑛′ (𝑠′) has a long
tail, i.e., it decreases smoothly with the increase of 𝑠, the function
𝑝𝑛′ (𝑠′)𝐿𝑚′ (𝑠′) can achieve very high values, following the image of the
Laguerre polynomials. This situation can lead to numerical overflows.
In the work (Moraes et al., 2022c), the authors have proposed a
light modification of the expansion of the particle flux as a Laguerre
eries (Eq. (3.2)) which can avoid this situation in some nonclassical

problems. However, as the modification proposed in Moraes et al.
(2022c) does not solve completely (for every nonclassical problem) this
11 
numerical issue, the exploration of different expansions for the flux
f particles (considering other sets of polynomials) is of interest and

should await future work.
In conjunction with the topics of future work already discussed

in this section, we intend to continue this work by extending the
athematical model adopted here to multidimensional and multigroup

alculations. Moreover, the implementation of acceleration schemes to
mprove the efficiency of the solution process is of great interest.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This study was financed in part by Coordenação de Aperfeiçoamento
de Pessoal de Nível Superior (CAPES) - Brasil - Finance Code 001,
and Conselho Nacional de Desenvolvimento Científico e Tecnológico
(CNPq) – Brasil (CNPq - Processo 170605/2023-0). R.C. Barros also
acknowledges support from Fundação Carlos Chagas Filho de Amparo
à Pesquisa do Estado do Rio de Janeiro (FAPERJ) - Brasil.

Data availability

No data was used for the research described in the article.

References

Adams, M.L., Larsen, E.W., Pomraning, G.C., 1989. Benchmark results for particle
transport in a binary Markov statistical medium. J. Quant. Spectrosc. Radiat.
Transfer 42 (4), 253–266. http://dx.doi.org/10.1016/0022-4073(89)90072-1.

Alvim, A.C.M., 2007. Métodos Numéricos em Engenharia Nuclear. Ed. Certa, Paraná,
Brazil.

Anon, 2008. Taylor expansions and applications. In: Mathematical Analysis I. Springer,
pp. 223–255. http://dx.doi.org/10.1007/978-88-470-0876-2_7,

Barros, R.C., Filho, H.A., Valero Orellana, E.T., da Silva, F.C., do Couto, N.,
Dominguez, D.S., Hernández, C.R.G., 2003. The application of spectral nodal
methods to discrete ordinates and diffusion problems in cartesian geometry for
neutron multiplying systems. Prog. Nucl. Energy 42 (4), 385–426. http://dx.doi.
org/10.1016/S0149-1970(03)90012-6.

Bitterli, B., Ravichandran, S., Muller, T., Wrenninge, M., Novak, J., Marschner, S.,
Jarosz, W., 2018. A radiative transfer framework for non-exponential media. In:
SIGGRAPH Asia 2018 Technical Papers. New York, NY.

Booth, T.E., 2006. Power iteration method for the several largest eigenvalues and
eigenfunctions. Nucl. Sci. Eng. 154 (1), 48–62. http://dx.doi.org/10.13182/NSE05-
05.

da Silva, O.P., Guida, M.R., Filho, H.A., Barros, R.C., 2020. A response matrix spectral
nodal method for energy multigroup x,y-geometry discrete ordinates problems
in non-multiplying media. Prog. Nucl. Energy 125, 103288. http://dx.doi.org/10.
1016/j.pnucene.2020.103288.

Davis, A.B., 2004. Effective propagation kernels in structured media with broad spatial
correlations, illustration with large-scale transporte of solar photons through cloudy
atmospheres. Comput. Methods Transp. Springer, New York.

Davis, A.B., Marshak, A., 2004. Photon propagation in heterogeneous optical media
with spatial correlations: Enhanced mean-free paths and wider-than-exponential
free-path distributions. J. Quant. Spectrosc. Radiat. Transfer 84 (3).

Davis, A.B., Mineev-Weinstein, 2009. Radiation transport through random media
represented as measurable functions: Positive versus negative spatial correlations.
In: International Conference on Advances in Mathematics, Computational Methods,
and Reactor Physics. Saratoga, United States of America.

Davis, A.B., Xu, F., 2014. A generalized linear transport model for spatially correlated
stochastic media. J. Comput. Theor. Transp. 43, 474–514.

de Abreu, M.P., Filho, H.A., de Barros, R.C., 1996. A numerical method for multigroup
slab-geometry eigenvalue problems in transport theory with no spatial truncation
error. Transport Theory Statist. Phys. URL https://www.tandfonline.com/doi/abs/
10.1080/00411459608204830.

Dumas, L., Golse, F., 2000. Homogenization of transport equations on JSTOR. SIAM J.
Appl. Math. 60 (4), 1447–1470, URL https://www.jstor.org/stable/118558.

Gandini, A., Salvatores, M., 2002. The physics of subcritical multiplying systems. J.
Nucl. Sci. Technol. 39 (6), 673–686. http://dx.doi.org/10.1080/18811248.2002.
9715249.

http://dx.doi.org/10.1016/0022-4073(89)90072-1
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb2
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb2
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb2
http://dx.doi.org/10.1007/978-88-470-0876-2_7
http://dx.doi.org/10.1016/S0149-1970(03)90012-6
http://dx.doi.org/10.1016/S0149-1970(03)90012-6
http://dx.doi.org/10.1016/S0149-1970(03)90012-6
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb5
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb5
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb5
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb5
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb5
http://dx.doi.org/10.13182/NSE05-05
http://dx.doi.org/10.13182/NSE05-05
http://dx.doi.org/10.13182/NSE05-05
http://dx.doi.org/10.1016/j.pnucene.2020.103288
http://dx.doi.org/10.1016/j.pnucene.2020.103288
http://dx.doi.org/10.1016/j.pnucene.2020.103288
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb8
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb8
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb8
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb8
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb8
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb9
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb9
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb9
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb9
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb9
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb10
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb10
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb10
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb10
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb10
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb10
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb10
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb11
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb11
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb11
https://www.tandfonline.com/doi/abs/10.1080/00411459608204830
https://www.tandfonline.com/doi/abs/10.1080/00411459608204830
https://www.tandfonline.com/doi/abs/10.1080/00411459608204830
https://www.jstor.org/stable/118558
http://dx.doi.org/10.1080/18811248.2002.9715249
http://dx.doi.org/10.1080/18811248.2002.9715249
http://dx.doi.org/10.1080/18811248.2002.9715249


L.R.C. Moraes et al. Annals of Nuclear Energy 216 (2025) 111250 
Ge, J., Wang, C., Xiao, Y., Tian, W., Qiu, S., Su, G.H., Zhang, D., Wu, Y., 2016.
Thermal-hydraulic analysis of a fluoride-salt-cooled pebble-bed reactor with CFD
methodology. Prog. Nucl. Energy 91, 83–96. http://dx.doi.org/10.1016/j.pnucene.
2016.01.011.

Golderg, K., Newman, M., Haynsworth, E., 1964. Combinatorial analysis. In:
Abramowitz, M., Stegun, I.A. (Eds.), Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables. Tenth Priting.

Gougar, H.D., Ougouag, A.M., Terry, W.K., Ivanov, K.N., 2010. Automated design
and optimization of pebble-bed reactor cores. Nucl. Sci. Eng. 165 (3), 245–269.
http://dx.doi.org/10.13182/NSE08-89.

Jarabo, A., Aliaga, C., Gutierrez, D., 2018. A radiative transfer framework for spatially
correlated materials. ACM Trans. Graph. 37 (4), 83:1–83:13.

Kadak, A.C., 2005. A future for nuclear energy: pebble bed reactors. Int. J. Crit.
Infrastruct. URL https://www.inderscienceonline.com/doi/abs/10.1504/IJCIS.2005.
006679.

Larsen, E.W., 2007. A generalized boltzmann equation for non-classical particle
transport. In: Proceedings of the International Conference on Mathematics and
Computation and Supercomputing in Nuclear Applications. M&C + SNA, Monterrey,
CA.

Larsen, E., Vasques, R., Vilhena, M., 2005. Particle transport in the 1-D diffusive
atomic mix limit. In: Proceedings of International Topical Meeting on Mathematics
and Computation, Supercomputing, Reactor Physics and Nuclear and Biological
Applications. Avignon, France.

Larsen, E.W., Vasques, R., 2011. A generalized linear Boltzmann equation for non-
classical particle transport. J. Quant. Spectrosc. Radiat. Transfer 112 (4), 619–631.
http://dx.doi.org/10.1016/j.jqsrt.2010.07.003.

Lewis, E.E., Miller, W.F., 1993. Computational Methods of Neutron Transport.
Wiley-Interscience, Illinois, USA.

Li-Po, L., Yi-Bao, L., Juan, W., Bo, Y., Tao, Z., 2008. The influence of reactor core
parameters on effective breeding coefficient keff. Chin. Phys. B 17 (3), 896.
http://dx.doi.org/10.1088/1674-1056/17/3/026.

Lohnert, G.H., Reutler, H., 1983. The modular HTR - a new design of high-temperature
pebble-bed reactor. Nucl. Energy 22 (3), 197–200, URL https://inis.iaea.org/search/
search.aspx?orig_q=RN:15031339.

Menezes, W.A., Alves Filho, H., Barros, R.C., Moraes, C.S., Dominguez, D.S., 2013.
Analytical spatial reconstruction scheme for the coarse-mesh solutions generated by
the constant spectral nodal method for monoenergetic discrete ordinates transport
calculations in X,Y geometry fission–chain reacting systems. Ann. Nucl. Energy 53,
274–279. http://dx.doi.org/10.1016/j.anucene.2012.08.029.

Moormann, R., 2009. A safety re-evaluation of the AVR pebble bed reactor operation
and its consequences for future HTR concepts. ASME Digit. Collect. 265–274.
http://dx.doi.org/10.1115/HTR2008-58336.

Moraes, L.R.C., Alves Filho, H., Barros, R.C., 2020a. Estimation of neutron sources
driving prescribed power generations in subcritical systems using one-speed two-
dimensional discrete ordinates formulations. Ann. Nucl. Energy 136, 107053. http:
//dx.doi.org/10.1016/j.anucene.2019.107053.

Moraes, L.R.C., Barichello, L.B., Barros, R.C., Vasques, R., 2022a. On the application of
the analytical discrete ordinates method to the solution of nonclassical transport
problems in slab geometry. J. Comput. Phys. 455, 110982. http://dx.doi.org/10.
1016/j.jcp.2022.110982.

Moraes, L.R., Barros, R.C., Filho, H.A., 2020b. Determinação de Fontes de Neutrôns
que Conduzem Sistemas Subcríticos a Distribuições Prescritas de Potência. Trends
Comput. Appl. Math. 21 (3), 425. http://dx.doi.org/10.5540/tema.2020.021.03.
425.

Moraes, L.R.C., Barros, R.C., Vasques, R., 2023a. On a response matrix solver for slab-
geometry neutral particle transport problems in the discrete ordinates and energy
multigroup formulations considering non-uniform interior sources. J. Comput.
Theor. Transp. 52 (1), 55–77. http://dx.doi.org/10.1080/23324309.2023.2194294.

Moraes, L.R.C., Filho, H.A., Barros, R.C., 2022b. On the calculation of neutron sources
generating steady prescribed power distributions in subcritical systems using
multigroup x,y-geometry discrete ordinates models. Ann. Nucl. Energy 168, 108854.
http://dx.doi.org/10.1016/j.anucene.2021.108854.
12 
Moraes, L.R.d.C., Mansur, R.S., Moura, C.A., Curbelo, J.P., Filho, H.A., Barros, R.C.,
2021. A response matrix method for slab-geometry discrete ordinates adjoint
calculations in energy-dependent neutral particle transport. J. Comput. Theor.
Transp. 50 (3), 159–179. http://dx.doi.org/10.1080/23324309.2021.1914661.

Moraes, L.R.C., Patel, J.K., Barros, R.C., Vasques, R., 2022c. An improved spectral
approach for solving the nonclassical neutral particle transport equation. J. Quant.
Spectrosc. Radiat. Transfer 290, 108282. http://dx.doi.org/10.1016/j.jqsrt.2022.
108282.

Moraes, L.R.C., Vasques, R., Barros, R.C., 2023b. On the occurrence of linearly
dependent eigenvectors in nonclassical transport calculations. J. Quant. Spectrosc.
Radiat. Transfer 295, 108407. http://dx.doi.org/10.1016/j.jqsrt.2022.108407.

Olson, G.L., 2007. Gray radiation transport in multi-dimensional stochastic binary media
with material temperature coupling. J. Quant. Spectrosc. Radiat. Transfer 104 (1),
86–98. http://dx.doi.org/10.1016/j.jqsrt.2006.08.013.

Patel, J.K., Moraes, L.R.C., Vasques, R., Barros, R.C., 2022. Transport synthetic
acceleration for the solution of the one-speed nonclassical spectral SN equations in
slab geometry. J. Comput. Appl. Math. 401, 113768. http://dx.doi.org/10.1016/j.
cam.2021.113768.

Pomraning, G.C., 1991. Linear Kinetic Theory and Particle Transport in Stochastic
Mixtures | Series on Advances in Mathematics for Applied Sciences. 7, World
Scientific Publishing Company, Singapore, http://dx.doi.org/10.1142/1549.

Pomraning, G.C., 2002. Transport theory in discrete stochastic mixtures. In: Advances
in Nuclear Science and Technology. Springer, Boston, MA, USA, pp. 47–93. http:
//dx.doi.org/10.1007/0-306-47811-0_2,

Prinja, A.K., Larsen, E.W., 2010. General principles of neutron transport. In: Handbook
of Nuclear Engineering. Springer, Boston, MA, USA, pp. 427–542. http://dx.doi.
org/10.1007/978-0-387-98149-9_5,

Romojaro, P., Álvarez-Velarde, F., Kodeli, I., Stankovskiy, A., Díez, C.J., Cabellos, O.,
García-Herranz, N., Heyse, J., Schillebeeckx, P., Van den Eynde, G., Žerovnik, G.,
2017. Nuclear data sensitivity and uncertainty analysis of effective neutron multi-
plication factor in various MYRRHA core configurations. Ann. Nucl. Energy 101,
330–338. http://dx.doi.org/10.1016/j.anucene.2016.11.027.

Stewart, J., 2009. Multivariable Calculus: Concepts and Contexts (Available 2010 Titles
Enhanced Web Assign). Cengage Learning, Boston, MA, USA.

Su, B., Pomraning, G.C., 1993. Benchmark results for particle transport in binary
non-markovian mixtures. J. Quant. Spectrosc. Radiat. Transfer 50 (2), 211–226.
http://dx.doi.org/10.1016/0022-4073(93)90119-3.

Torquato, S., Truskett, T.M., Debenedetti, P.G., 2000. Is random close packing of
spheres well defined? Phys. Rev. Lett. 84 (10), 2064–2067. http://dx.doi.org/10.
1103/PhysRevLett.84.2064.

Vasques, R., 2013. Estimating anisotropic diffusion of neutrons near the boundary
of a pebble bed random system. In: Proceedings of the International Conference
on Mathematics and Computational Methods Applied To Nuclear Science &
Engineering. Sun Valley, ID.

Vasques, R., Krycki, K., Slaybaugh, R.N., 2017. Nonclassical particle transport in
one-dimensional random periodic media. Nucl. Sci. Eng. 185 (1), 78–106.

Vasques, R., Larsen, E.W., 2009. Anisotropic diffusion in model 2-D pebble-bed reactor
cores. In: Proceedings of the International Conference on Advances in Mathematics.
Saratoga Springs, NY.

Vasques, R., Larsen, E.W., 2014a. Non-classical particle transport with angular-
dependent path-length distributions. I: Theory. Ann. Nucl. Energy 70, 292–300.
http://dx.doi.org/10.1016/j.anucene.2013.12.021.

Vasques, R., Larsen, E.W., 2014c. Non-classical particle transport with angular-
dependent pathlength distributions. II: application to pebble bed reactor cores. Ann.
Nucl. Energy 70, 301–311.

Vasques, R., Moraes, L.R.C., Barros, R.C., Slaybaugh, R.N., 2020. A spectral approach
for solving the nonclassical transport equation. J. Comput. Phys. 402, 109078.
http://dx.doi.org/10.1016/j.jcp.2019.109078.

Wrenninge, M., Villemin, R., Hery, C., 2017. Path Traced Subsurface Scattering using
Anisotropic Phase Functions and Non-Exponential Free Flights. Technical Memo
17-07, Pixar Inc..

Yang, X.-S., 2017. Chapter 3 - binomial theorem and expansions. In: Engineering
Mathematics with Examples and Applications. Academic Press, Cambridge, MA,
USA, pp. 31–35. http://dx.doi.org/10.1016/B978-0-12-809730-4.00004-5,

http://dx.doi.org/10.1016/j.pnucene.2016.01.011
http://dx.doi.org/10.1016/j.pnucene.2016.01.011
http://dx.doi.org/10.1016/j.pnucene.2016.01.011
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb16
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb16
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb16
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb16
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb16
http://dx.doi.org/10.13182/NSE08-89
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb18
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb18
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb18
https://www.inderscienceonline.com/doi/abs/10.1504/IJCIS.2005.006679
https://www.inderscienceonline.com/doi/abs/10.1504/IJCIS.2005.006679
https://www.inderscienceonline.com/doi/abs/10.1504/IJCIS.2005.006679
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb20
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb20
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb20
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb20
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb20
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb20
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb20
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb21
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb21
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb21
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb21
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb21
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb21
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb21
http://dx.doi.org/10.1016/j.jqsrt.2010.07.003
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb23
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb23
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb23
http://dx.doi.org/10.1088/1674-1056/17/3/026
https://inis.iaea.org/search/search.aspx?orig_q=RN:15031339
https://inis.iaea.org/search/search.aspx?orig_q=RN:15031339
https://inis.iaea.org/search/search.aspx?orig_q=RN:15031339
http://dx.doi.org/10.1016/j.anucene.2012.08.029
http://dx.doi.org/10.1115/HTR2008-58336
http://dx.doi.org/10.1016/j.anucene.2019.107053
http://dx.doi.org/10.1016/j.anucene.2019.107053
http://dx.doi.org/10.1016/j.anucene.2019.107053
http://dx.doi.org/10.1016/j.jcp.2022.110982
http://dx.doi.org/10.1016/j.jcp.2022.110982
http://dx.doi.org/10.1016/j.jcp.2022.110982
http://dx.doi.org/10.5540/tema.2020.021.03.425
http://dx.doi.org/10.5540/tema.2020.021.03.425
http://dx.doi.org/10.5540/tema.2020.021.03.425
http://dx.doi.org/10.1080/23324309.2023.2194294
http://dx.doi.org/10.1016/j.anucene.2021.108854
http://dx.doi.org/10.1080/23324309.2021.1914661
http://dx.doi.org/10.1016/j.jqsrt.2022.108282
http://dx.doi.org/10.1016/j.jqsrt.2022.108282
http://dx.doi.org/10.1016/j.jqsrt.2022.108282
http://dx.doi.org/10.1016/j.jqsrt.2022.108407
http://dx.doi.org/10.1016/j.jqsrt.2006.08.013
http://dx.doi.org/10.1016/j.cam.2021.113768
http://dx.doi.org/10.1016/j.cam.2021.113768
http://dx.doi.org/10.1016/j.cam.2021.113768
http://dx.doi.org/10.1142/1549
http://dx.doi.org/10.1007/0-306-47811-0_2
http://dx.doi.org/10.1007/0-306-47811-0_2
http://dx.doi.org/10.1007/0-306-47811-0_2
http://dx.doi.org/10.1007/978-0-387-98149-9_5
http://dx.doi.org/10.1007/978-0-387-98149-9_5
http://dx.doi.org/10.1007/978-0-387-98149-9_5
http://dx.doi.org/10.1016/j.anucene.2016.11.027
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb42
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb42
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb42
http://dx.doi.org/10.1016/0022-4073(93)90119-3
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb45
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb45
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb45
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb45
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb45
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb45
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb45
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb46
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb46
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb46
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb47
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb47
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb47
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb47
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb47
http://dx.doi.org/10.1016/j.anucene.2013.12.021
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb49
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb49
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb49
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb49
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb49
http://dx.doi.org/10.1016/j.jcp.2019.109078
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb51
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb51
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb51
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb51
http://refhub.elsevier.com/S0306-4549(25)00067-2/sb51
http://dx.doi.org/10.1016/B978-0-12-809730-4.00004-5

	A nonclassical model to eigenvalue neutron transport calculations
	Introduction
	A nonclassical particle transport equation for eigenvalue calculations
	Derivation of the keff GLBE

	A solution technique for the one-dimensional keff-GLBE in the SN formulation
	Spectral Approach
	Diamond Difference method and the Source Iteration scheme
	Estimation of keff

	Numerical Results
	Model-Problem I
	Model-Problem II

	Concluding remarks
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


