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Abstract

Mentalising ability, indexed as the ability to understand others' beliefs, feelings, inten-

tions, thoughts and traits, is a pivotal and fundamental component of human social

cognition. However, considering the multifaceted nature of mentalising ability, little

research has focused on characterising individual differences in different mentalising

components. And even less research has been devoted to investigating how the vari-

ance in the structural and functional patterns of the amygdala and hippocampus, two

vital subcortical regions of the “social brain”, are related to inter-individual variability

in mentalising ability. Here, as a first step toward filling these gaps, we exploited

inter-subject representational similarity analysis (IS-RSA) to assess relationships

between amygdala and hippocampal morphometry (surface-based multivariate mor-

phometry statistics, MMS), connectivity (resting-state functional connectivity, rs-FC)

and mentalising ability (interactive mentalisation questionnaire [IMQ] scores) across

the participants (N¼24). In IS-RSA, we proposed a novel pipeline, that is, computing

patching and pooling operations-based surface distance (CPP-SD), to obtain a decent

representation for high-dimensional MMS data. On this basis, we found significant

correlations (i.e., second-order isomorphisms) between these three distinct modali-

ties, indicating that a trinity existed in idiosyncratic patterns of brain morphometry,

connectivity and mentalising ability. Notably, a region-related mentalising specificity

emerged from these associations: self-self and self-other mentalisation are more

related to the hippocampus, while other-self mentalisation shows a closer link with

the amygdala. Furthermore, by utilising the dyadic regression analysis, we observed

significant interactions such that subject pairs with similar morphometry had even
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greater mentalising similarity if they were also similar in rs-FC. Altogether, we demon-

strated the feasibility and illustrated the promise of using IS-RSA to study individual

differences, deepening our understanding of how individual brains give rise to their

mentalising abilities.
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dyadic regression analysis, interactive mentalisation questionnaire, inter-subject

representational similarity analysis, mentalising, resting-state functional connectivity, surface-

based multivariate morphometry statistics

1 | INTRODUCTION

Every individual makes a “difference”, and one's mentalising ability or

theory of mind (ToM) (Schaafsma et al., 2015), one of the core func-

tions in human social life (Frith & Frith, 2006), underlies this significance

and uniqueness. Such ability is fundamental to social understanding and

social learning, and its dysfunction is associated with various social dis-

orders, such as autism spectrum disorder (ASD) (Hyatt et al., 2020;

Schuwerk et al., 2019) and social anxiety disorder (Washburn

et al., 2016). Though most previous work has described mentalising

ability as a whole (i.e., the ability to reason about and infer others’ men-

tal states) (Adolphs, 2009; Frith & Frith, 2005), mentalising is a multifac-

eted concept that refers to multiple constructs involved in treating

others and ourselves as social agents (Allen & Fonagy, 2008). Accord-

ingly, the work with fine-grained dissection of the mentalising compo-

nents will advance our understanding of mentalising during live social

interaction (Wu, Liu, et al., 2020). Moreover, previous research on the

inter-individual variability in mentalising ability has typically focused on

neurological and psychiatric disorders (Kerr et al., 2003; Richell

et al., 2003; Snowden et al., 2003; Stuss et al., 2001). While confirming

the importance of mentalising in social life, substantial mentalising dif-

ferences also exist in healthy adults. Yet, it is quite difficult to capture

these differences behaviourally because of the ceiling effects observed

on standard laboratory tasks (Koster-Hale & Saxe, 2013). Additionally,

rare studies have been devoted to investigating sub-components of

mentalising ability. In light of the newly proposed interactive mentalis-

ing theory (IMT) (Wu, Liu, et al., 2020) and its related interactive menta-

lisation questionnaire (IMQ) (Wu et al., 2022), our study aimed to

investigate the inter-individual variability in three different but interac-

tive mentalising components: self-self mentalisation (SS), self-other

mentalisation (SO) and other-self mentalisation (OS) (See more details

about IMQ in Section 2.5).

More specifically, we sought to map the individual difference

nature of different mentalising components to the brain. In the past

decades, researchers have found numerous brain regions involved in

mentalising, including the medial prefrontal cortex (mPFC), posterior

superior temporal sulcus (pSTS) and temporoparietal junction (TPJ)

(Amodio & Frith, 2006; Biervoye et al., 2016; Frith & Frith, 2001;

Saxe & Kanwisher, 2003; Schurz et al., 2014; Siegal & Varley, 2002;

Wu, Feng, et al., 2020). Recent work has extended the neural profile

of mentalising from the single brain region to a widely distributed

network of brain regions termed the “mentalising network” (MTN)

(Wang et al., 2021). However, two different but same vital subcortical

regions of the “social brain” (Bickart et al., 2014; Montagrin

et al., 2018), that is, the amygdala and hippocampus, which may also

be the neural basis associated with individual differences in different

mentalising components, have been less explored. In particular, the

unasked question is whether inter-individual variability in the struc-

tural or functional patterns of the above two brain regions is associ-

ated with that in different mentalising components. Here, we used

surface-based multivariate morphometry statistics (MMS) (Wang

et al., 2011, 2010) and resting-state functional connectivity (rs-FC) to

characterise amygdala and hippocampal structures and functions,

respectively (Sections 2.3 and 2.4). Our goal was to take the first step

toward interrogating whether individual differences in amygdala or

hippocampal morphometry or connectivity reflect differences in men-

talising ability of individuals.

We addressed this goal by using inter-subject representational

similarity analysis (IS-RSA) (Chen et al., 2020; Feilong et al., 2018;

Finn et al., 2020; Nguyen et al., 2019; Nummenmaa et al., 2012; van

Baar et al., 2019) to link individual brain morphometry, connectivity

and mentalising ability (Section 2.6). Specifically, based on the MRI

and psychometric data collected from twenty-four participants

(Sections 2.1 and 2.2), we computed each subject pair's dissimilarity

to construct inter-subject dissimilarity matrices (IDMs) for the above

three modalities. In particular, we proposed a pipeline, that is, com-

puting patching and pooling operations-based surface distance

(CPP-SD), for IDM construction of high-dimensional MMS data

(Figure 5). In the end, we compared these patterns (i.e., IDMs) to

detect the shared structure of different modalities. We predicted

that the levels of mentalising ability would correlate positively with

the dissimilarity in amygdala and hippocampal morphometry and

connectivity. Moreover, we also predicted that dissimilarity in func-

tional and structural patterns would positively covary with each

other. In general, the above predictions were rooted in our Hypothe-

sis 1: Three distinct modalities will share one essence, that is, there

is a structure that exists in idiosyncratic patterns of brain morphom-

etry, connectivity and mentalising ability, and we termed it as

“trinity”.

Along with the trinity hypothesis, we further hypothesised that

there will be a region-related specificity in associations among differ-

ent mentalising components and amygdala or hippocampal MMS and
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rs-FC (Hypothesis 2). Specifically, mounting evidence indicates that

both hippocampal function and structure are highly associated with

meta-cognition (Allen et al., 2017; Chua et al., 2006; Moritz

et al., 2006; Ren et al., 2018; Zou & Kwok, 2022). Meanwhile, two

well-established theories: (1) relational integration theory (O'Keefe &

Nadel, 1978) (born in Tolman's seminal concept of the cognitive map

[Tolman, 1948] and has been applied outside the original domain of

physical space to social space [Eichenbaum & Cohen, 2014; Rubin

et al., 2014; Schafer & Schiller, 2018; Tavares et al., 2015; Wang

et al., 2015]) and (2) constructive memory theory (Schacter, 2012), all

point to a crucial role of the hippocampus in how human construct,

interact with and predict the intentions and actions of others

(Laurita & Nathan Spreng, 2017). Ergo, we reasoned that hippocampal

morphometry and connectivity would be more correlated with meta-

cognition (SS) and perspective-taking (SO). While for OS (the ability to

see “ourselves from the outside” [Asen & Fonagy, 2012]), a higher-

order mentalising component for complex social interactions, espe-

cially for trust or deception (Wu et al., 2022), we speculated that the

amygdala would show a closer link to this component based on the

indispensable role of the amygdala in developing and expressing inter-

personal trust (Eskander et al., 2020; Haas et al., 2015; Koscik &

Tranel, 2011; Santos et al., 2016).

Given that brain structure and function are highly related

(Batista-García-Ram�o & Fernández-Verdecia, 2018), the following

interrelated hypothesis (Hypothesis 3) was that subject pairs with

similar hippocampal MMS will have even greater SS and SO similarity

if they are also similar in hippocampal rs-FC. In a similar vein, subject

pairs with similar amygdala MMS will have even greater OS similarity

if they are also similar in amygdala rs-FC. To test this hypothesis and

explore potential interaction effects, we analysed mentalising similar-

ity across subject dyads using the mixed-effects dyadic regression

model (Chen et al., 2017; van Baar et al., 2021) (Section 2.7).

2 | METHODS

2.1 | Participants

We recruited thirty-one healthy right-handed participants (15 females,

age: mean � SD =23.74 � 4.02). They participated in this study via

an online recruiting system. All participants filled out a screening form

and were included in the study only if they confirmed they were not

suffering from any significant medical or psychiatric illness, not using

the medication, or not drinking or smoking daily. All the procedures

involved followed the Declaration of Helsinki and were approved by

the local ethics committee. To ensure the data quality of morphome-

try, we followed the literature (Dong et al., 2019; Worker et al., 2018)

in visually examining T1-weighted images for motion artefact, wrap-

around and grey/white contrast and thus excluded seven participants.

Finally, we kept data from the other twenty-four participants

(11 females, age: mean � SD =23.29 � 2.95) in the following

analysis.

2.2 | Resting-state fMRI and structural MRI

dataset

We utilised the resting-state fMRI (rsfMRI) and structural MRI data

collected from the same participants. Specifically, MRI data was col-

lected with a General Electric 3 T scanner (GE Discovery MR750). The

rsfMRI data was collected using gradient-echo by an echo-planar

imaging (EPI) sequence. Slices were acquired in an interleaved order,

and the data consisted of 200 whole-brain volumes (repetition time

(TR) = 2000 ms, echo time (TE) = 21 ms, flip angle = 90�, slice num-

ber = 42, slice thickness = 3.5 mm, matrix size = 64 � 64, field of

view (FOV) = 200mm and voxel size = 3.1 � 3.1 � 3.5mm3).

T1-weighted structural images were acquired using a 3D

magnetisation-prepared rapid gradient-echo (MPRAGE) sequence

(TR = 2530ms, TE = 2.34ms, flip angle = 7�, FOV = 256mm, slice

number = 176, slice thickness = 1mm, in-plane matrix resolu-

tion = 256 � 256, FOV = 256mm and voxel size = 1 � 1 � 1mm3).

All participants underwent the T1 and resting-state fMRI scanning.

This rsfMRI dataset was also used in our previous study (Pang

et al., 2022).

2.3 | MMS: Surface-based multivariate

morphometry statistics

Surface-based MMS were proposed for brain local structural analysis

(Wang et al., 2011, 2010). Since then, studies have demonstrated

that MMS has a larger effect size than volume, area and other similar

morphometry measures (Dong et al., 2020, 2019; Wang et al., 2010;

Wu et al., 2021). In this work, we calculated amygdala and hippo-

campal MMS from raw MR images by using the MRI processing pipe-

line used in the paper (Dong et al., 2019), as illustrated in Figure 1.

Specifically, each hippocampal or amygdala surface was parame-

terised into 15,000 vertices (Dong et al., 2019; Yao et al., 2020). And

each vertex MMS has two kinds of morphometry features: radial dis-

tance (RD) (Pizer et al., 1999; Thompson et al., 2004) and multivari-

ate tensor-based morphometry (mTBM) (Davatzikos, 1996;

Thompson et al., 2000; Wang et al., 2010). The RD (a scalar) repre-

sents the thickness of the shape at each vertex to the medial axis,

which reflects the surface differences along the surface normal

directions (Wang et al., 2011). The medial axis is determined by the

geometric centre of the isoparametric curve on the computed con-

formal grid (Wang et al., 2011). The axis is perpendicular to the iso-

parametric curve, so the thickness can be easily calculated as the

Euclidean distance between the core and the vertex on the curve.

The vertex mTBM (a 3 � 1 positive definite matrix) captures deforma-

tions within local surfaces, such as rotation, dilation and shears with

surfaces perpendicular to RD (Dong et al., 2020; Shi et al., 2013).

Since the surface of the hippocampus or amygdala in each brain hemi-

sphere has 15,000 vertices, the feature dimensionality of both hippo-

campus or amygdala for each subject is 60,000 (15,000 � 4)

eventually.
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2.4 | Rs-FC: Resting-state functional connectivity

To profile amygdala and hippocampal functions, we utilised rs-FC,

which could predict social behaviours and thus has advanced our

understanding of complex mental states (Eickhoff & Müller, 2015;

Finn et al., 2015; Pang et al., 2022; Pezzulo et al., 2021). The rsfMRI

preprocessing was adopted from our previous study (Pang

et al., 2022). Specifically, the DPARSF V5.1 module (Yan et al., 2016)

was used to preprocess rsfMRI data. The initial ten volumes were dis-

carded because of instability in the MRI signal. Then, all slices were

corrected for varying acquisition times based on each participant's

image series. T1-weighted MPRAGE structural images were aligned

with the mean functional image after realignment. The structural

images were segmented into grey matter, white matter and cerebro-

spinal fluid (Ashburner & Friston, 2005). To eliminate nuisance signals,

the Friston 24-parameter model (Friston et al., 1996) was applied to

remove head motion, the mean white matter and cerebrospinal fluid

signals. The functional data from individual native space was trans-

formed to the standard Montreal Neurological Institute space,1 and

then spatial smoothing (FWMH kernel: 6 mm) was applied for connec-

tivity analysis. Additionally, temporal filtering (0.01–0.1 Hz) was

applied to the time series. Then, to conduct the rs-FC analysis, we

extracted the BOLD time series of 116 regions in the whole brain

according to the Automated Anatomical Labelling (AAL) 116 atlas

(Tzourio-Mazoyer et al., 2002). Then, we obtained a 116 � 116 FC

matrix by Pearson's correlation analysis between the averaged BOLD

time series of each pair of brain regions. We calculated the static FC

matrix subject by subject, resulting in 24 FC matrices. Notably, with

our specific research interest in the amygdala and hippocampus in this

study, we only used FC between bilateral amygdala or hippocampus

and other brain regions from the AAL 116 atlas for the following anal-

ysis (Figure 2 shows their group-average profiles).

F IGURE 1 Processing pipeline of hippocampal morphometry data. (a,b) The hippocampal structures are segmented from registered

T1-weighted MR images; (c) Smoothed hippocampal surfaces are then generated; (d) Surface-based multivariate morphometry statistics (MMS),

including hippocampal radial distance (RD, a scalar) and the multivariate tensor-based morphometry (mTBM, a 3-dimensional vector) features at

each vertex, are calculated after the surface parameterisation and fluid registration. Notice that we also applied the same pipeline to get amygdala

morphometry data. Sub-figure (a) and (b) were visualised by using Nilearn (Abraham et al., 2014) and BrainNet Viewer (Xia et al., 2013),

respectively.

0

0.76
Right amygdala

Right hippocampus

0

0.76

Left amygdala

Left hippocampus

F IGURE 2 Group-average profiles of resting-state functional connectivity between seeds (top: amygdala, bottom: hippocampus) and other

brain regions from the AAL 116 atlas, separated by hemisphere. The figure was visualised using Nilearn (Abraham et al., 2014).

1http://www.bic.mni.mcgill.ca/ServicesAtlases/HomePage.
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2.5 | IMQ: Interactive mentalisation questionnaire

While mentalising ability has classically been studied as a whole

capacity (Adolphs, 2009; Frith & Frith, 2005), different types of men-

talising may occur in social interaction, and it requires measures of the

mentalising components, as people's inner states are not directly

observable (Wu, Liu, et al., 2020). Recently, the newly developed

interactive mentalisation questionnaire (IMQ) (Wu et al., 2022) offers

us opportunities to capture different but interactive mentalising com-

ponents, and thus we could further focus on their neural association

related to key brain regions in social interaction. The IMQ contains

20 items and covers three mentalising components, that is, SS (the

ability to look inward to self-monitor and assess thought processes),

SO (the ability to infer the mental states and thoughts of others) and

OS (the ability to make inferences about how much insight one think

other agents have into one's own thoughts and intentions). In this

study, participants completed IMQ after the scanning session, and we

visualised their position in a 3-dimensional space (composed of scalar

summary scores of SS, SO or OS) based on their IMQ scores in

Figure 3.

2.6 | IS-RSA: Inter-subject representational

similarity analysis

We exploited IS-RSA (Chen et al., 2020; Feilong et al., 2018; Finn

et al., 2020; Nguyen et al., 2019; Nummenmaa et al., 2012; van Baar

et al., 2019) to link individual brain morphometry, connectivity and

mentalising ability (i.e., test Hypothesis 1), as shown in Figure 4. This

analytic technique enables us to explore how individual differences in

one modality (e.g., rsfMRI) are related to that in another modality

(e.g., behavioural disposition) using second-order isomorphism

(Shepard & Chipman, 1970) akin to representational similarity analysis

(RSA) (Kriegeskorte et al., 2008; Kriegeskorte & Kievit, 2013; Popal

et al., 2019). The intuition is that if individuals are more similar in one

modality (e.g., MMS), they will also exhibit a higher similarity in

another modality (e.g., IMQ scores). We operationalised this by com-

puting three types of inter-subject dissimilarity matrices (IDMs), which

characterise related modality's representations in terms of subject-to-

subject differences for all the MMS, rs-FC and IMQ. Then we can

compute the similarity among these modalities by detecting the

degree to which their IDMs agree. By directly comparing the repre-

sentational geometry (Kriegeskorte et al., 2008; Kriegeskorte &

Kievit, 2013) on the level of IDMs, we circumvent the problem of

defining sophisticated mapping functions between different

modalities.

Moving closer to individual differences in brain morphometry, we

computed MMS IDMs separately from amygdala or hippocampal sur-

face (one 15,000 � 4 surface for each brain region). Specifically, we

proposed a pipeline, that is, CPP-SD, to obtain a decent surface repre-

sentation for high-dimensional MMS data. Then, we computed pair-

wise distances again, not based on original high-dimensional MMS

data but on the extracted surface distances matrices, as depicted in

68
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F IGURE 3 Visualisation of IMQ scores of different participants.

We visualised the position of each participant based on their IMQ

scores, which can be divided into three parts: self-self mentalisation

(SS), self-other mentalisation (SO) and other-self mentalisation (OS).

The colour intensity denotes the participants' overall summary score

for the IMQ. The figure was visualised by using Matplotlib

(Hunter, 2007).

S1

S2

S3

Sn

S1

S2

Sn

S1

S2

Sn

S1

S2

Sn

S1 S2 Sn S1 S2 Sn

S1 S2 Sn

Subjects

IMQ

scores

MMS rs-FC

Inter-subject

dissimilarity matrix

from IMQ scores

Inter-subject

dissimilarity matrix

from MMS

Inter-subject

dissimilarity matrix

from rs-FC

Dissimilarity

rho

rho rho

F IGURE 4 A schematic illustration of the inter-subject

representational similarity analysis framework. For each subject

(middle layer), we can compute the dissimilarity between each subject

pair by using IMQ scores (bottom “IMQ scores” layer), the pattern of

MMS (top-left “MMS” layer) and the pattern of rs-FC (top-right “rs-

FC” layer) for their amygdala and hippocampus. The top and bottom

layers depict weighted graphs using adjacency matrices, that is, inter-

subject dissimilarity matrices, in which thicker lines denote increased

dissimilarity between subjects. In IS-RSA, we constructed inter-

subject dissimilarity matrices for all the rs-FC, MMS and IMQ scores

and then compared them using Spearman rho rank-order correlation.

In this way, we can detect shared structure between amygdala and

hippocampal morphometry, connectivity and mentalising components.
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Figure 5. We speculated that constructing MMS IDM using CPP-SD

would improve the IDM correspondences compared to the conven-

tional way, that is, basing IDM directly on reshaped surfaces (a single

vector of 60,000 values for each surface), which may treat noisy

values as equally important to values that carry the signal (Kaniuth &

Hebart, 2022). To construct rs-FC IDM separately for the amygdala

and hippocampus, we computed the dissimilarity between pairs of

subjects' amygdala or hippocampal rs-FC (one vector of 116 values

for each brain region). In the same way, we constructed IMQ IDM

separately for each mentalising component (i.e., SS, SO and OS).

Finally, we quantified representational similarity as the Spearman

rho rank-order correlation between the upper (or lower) off-diagonal

triangles of IDMs. We had four MMS IDMs, four rs-FC IDMs (for

bilateral amygdala and hippocampus, separately) and three IMQ IDMs

(for three mentalising components), so this procedure yielded 40 rep-

resentational similarity values in our analysis. To assess statistical sig-

nificance, we followed the literature (Bonner & Epstein, 2018; Lu &

Ku, 2020) by using a permutation test, in which the rows and columns

of one of the IDMs were randomly shuffled, and a Spearman correla-

tion between IDMs was calculated over 10,000 iterations. Then we

calculated p-values from this permutation distribution for a one-tailed

test as follows:

p¼

P
rhop ≥ rhooð Þþ1

Nþ1
ð1Þ

where rhop and rhoo denote the Spearman correlations from the per-

mutation distribution and the original data, respectively. We thre-

sholded all permuted p-values at a false-discovery rate (FDR) of 0.05

(Benjamini–Hochberg method [Benjamini & Hochberg, 1995]).

During the construction of IDMs, different types of parameters

might affect the final correspondence. Empirically, we tried differ-

ent patch sizes, including 5 � 5, 10 � 10, 25 � 25 and 50 �

50 vertices, and different pooling operations, including max-,

mean-, min-over-vertex operation or a combination of these three

kinds of operations for constructing MMS IDM. We also tried dif-

ferent distance metrics, including Pearson distance, Euclidean dis-

tance, Mahalanobis distance, cosine distance and Manhattan

distance, for constructing all three types of IDMs, plus word

mover's distance (Kusner et al., 2015) and word rotator's distance

(Yokoi et al., 2020), for constructing MMS IDM (with patching and

pooling operations but without computing surface distance in this

case). To ensure no single IMQ item could drive the dissimilarity

between subjects when applying the above distance metrics, we

followed the literature (Chen et al., 2020) in normalising IMQ items

to the range 0,1½ � prior to computing pairwise multivariate distances.

Besides these distance metrics, we also tried absolute distance, Anna

Karenina distances (Finn et al., 2020) (all high scorers are alike, and all

low scorers are low-scoring in their own way), including mean dis-

tance, minimum distance and the product of the absolute and mini-

mum distance, and reversed Anna Karenina distance (Finn et al., 2020)

(all low scorers are alike, all high scorers are high-scoring in their own

way), that is, maximum distance, for scalar summary scores of menta-

lising components.

We performed a grid search (Feurer & Hutter, 2019) over the

above parameter space and selected the optimal parameter configura-

tion with the highest average IDM correspondence from subject-wise

bootstrapping (Chen et al., 2016). Specifically, in each of the 1000

repetitions, we performed resampling with replacement from the

24 original individuals. This operation would involve non-informative

dissimilarity values of the IDM diagonals (comparisons of subjects to

themselves), so we excluded these values (less than 4.2%) to avoid

overestimating representational similarity values (Kriegeskorte

et al., 2008). Then we computed IDMs based on the bootstrapped

samples and obtained average IDM correspondence and 95% confi-

dence intervals accordingly.

Compute the surface distance 

between each patch pair

Patch the vertices and 

conduct global pooling 

operation within each patch

(a) (b)

Dissimilarity

S1

S2

Sn

S1 S2 Sn

P1

P2

Pm

P1 P2 Pm

Dissimilarity

...

Construct the inter-subject 

dissimilarity matrix

(c)

F IGURE 5 The pipeline of constructing inter-subject dissimilarity matrix for hippocampal MMS data. (a) We first patch the vertices on each

hippocampal surface and conduct global pooling operation (Collobert et al., 2011) within each patch to obtain the vector representation for each

path; (b) Then we compute the surface distance between each patch pair for the whole surface, resulting in an m-dimensional symmetric matrix

(m denotes the patch number); (c) We extract the upper (or lower) off-diagonal triangle of this matrix and reshape it to a vector as the

representation of one's hippocampal morphometry, and thus we could compute the dissimilarity between each subject pair via different distance

metrics. Notice that we also applied the same construction pipeline to amygdala MMS data.

6 LI ET AL.

 1
0

9
7

0
1

9
3

, 0
, D

o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
0

2
/h

b
m

.2
6

2
8

5
 b

y
 U

n
iv

ersity
 O

f M
acau

, W
iley

 O
n
lin

e L
ib

rary
 o

n
 [2

0
/0

4
/2

0
2
3
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



2.7 | Dyadic regression analysis

To evaluate Hypothesis 3 about the interaction between MMS

and rs-FC similarity in predicting mentalising similarity,2 we fur-

ther conducted the dyadic regression analysis (Chen et al., 2017;

van Baar et al., 2021), that is, a regression analysis in which each

observation portrays the similarity between a subject pair. By

using linear mixed-effects modelling, this analysis could account

for inherent statistical dependencies between all possible subject

pairs (dyads) (Chen et al., 2017; Parkinson et al., 2018) and evalu-

ate the interactions between MMS and rs-FC simultaneously,

which is impossible in standard RSA. Here, we used Pymer4

(Jolly, 2018) to implement the mixed-effects regression model,

which included a random subject intercept for both subjects

involved in that subject pair. The model thus followed the formu-

lation as shown below:

zij ¼ γþXijβþαiþαjþϵij, i> j ð2Þ

where i and j denote two subjects in a dyad, and zij represents pair-

wise observations (i.e., the similarity between the two subjects in one

mentalising component). We regressed zij onto fixed effects Xij

(i.e., MMS similarity, rs-FC similarity and their interaction), random

effects αi and αj (α�N 0,σαð Þ) attributable to subjects i and j, and the

residual term ϵij (ϵ�N 0,σϵð Þ) for the dyad i, jð Þ.

3 | RESULTS

3.1 | Results of IS-RSA

We performed IS-RSA to test Hypothesis 1, that is, whether a trinity

could derive from linking individual brain morphometry, connectivity

and mentalising ability. In other words, we expected to observe posi-

tive correlations among these three seemingly distinct modalities.

Consistent with our Hypothesis 1, the results (see Figure 6 and

Table S1) revealed that a trinity indeed existed in idiosyncratic pat-

terns with all correlations significantly greater than zero (all the p-

values < :05 after applying the FDR correction for multiple compari-

sons), indicating brain morphometry, connectivity and mentalising

ability were fundamentally related.

In particular, when comparing similarities between IMQ scores

and MMS, the highest similarities were found in the right hippocam-

pus (SS: rho¼0:5302, p< :001; SO: rho¼0:5156, p< :001) and the

right amygdala (OS: rho¼0:5627, p< :001) (Table S1). When compar-

ing similarities between IMQ scores and rs-FC, the highest similarities

were found in the right hippocampus (SS: rho¼0:3600, p< :001; SO:

rho¼0:2580, p< :001) and the left amygdala (OS: rho¼0:3344,

p< :001) (Table S1). When comparing similarities between rs-FC and

MMS, the highest similarities were found in the right amygdala (rs-

FCLA: rho¼0:4942, p< :001; rs-FCRA: rho¼0:3848, p< :001; rs-FCRA:

rho¼0:3738, p< :001; rs-FCRA: rho¼0:4421, p< :001) (Table S1).

After finding support for Hypothesis 1, we performed two-sided

Wilcoxon signed-rank tests based on the bootstrapped samples to

further test Hypothesis 2, that is, (a) whether an IDM derived from

either SS or SO is more related to an IDM derived from hippocampal

MMS or rs-FC compared to that derived from amygdala MMS or rs-

FC; (b) whether an IDM derived from OS is more related to an IDM

derived from amygdala MMS or rs-FC compared to that derived from

hippocampal MMS or rs-FC. We corrected multiple comparisons by

controlling the expected FDR at 0.05. As shown in Table 1, we found

that the IDM derived from the right hippocampal MMS or rs-FC was,

on average, significantly more correlated with that from SS (MMSRH:

rhomean ¼0:5168, rs-FCRH: rhomean ¼0:3434) or SO (rs-FCRH:

rhomean ¼0:2427). Although the average IDM correspondence

between the right hippocampal MMS and SO was not significantly

stronger than that between the left hippocampal or left amygdala

MMS and SO, it was the highest correlation score derived from quan-

tifying representational similarity between MMS and SO (MMSRH:

rhomean ¼0:4766). We also found that the average IDM correspon-

dence between the right amygdala MMS or the left amygdala rs-FC

and OS was significantly stronger than that between the other brain

regions of interest and OS (MMSRA: rhomean ¼0:5153, rs-FCLA:

rhomean ¼0:3164). In summary, the results corroborated our proposed

Hypothesis 2.

3.2 | Results of dyadic regression analysis

After finding support for our Hypotheses 1 and 2, we then turned to

Hypothesis 3 that subject pairs with similar hippocampal

(or amygdala) morphometry will have even greater SS and SO similar-

ity (or OS similarity) if they are also similar in hippocampal

(or amygdala) rs-FC. For the dyadic regression analysis, we chose the

right hippocampus and bilateral amygdala from Hypothesis 2 as brain

regions of interest. We noted that all regressors were only weakly

correlated (rho< j0:28j), ensuring estimable linear mixed-effects

models. The results first revealed that the interaction between MMS

and rs-FC similarity drove the similarities of all three mentalising com-

ponents (see Figure 7a). This effect was significant over the right hip-

pocampus in predicting SS similarity (β¼0:159, SE¼0:019, p< :001)

and SO similarity (β¼0:050, SE¼0:021, p¼ :020) and left amygdala

in predicting OS similarity (β¼0:046, SE¼0:023, p¼ :046) (Table 2).

More importantly, to understand the directionality of the observed

MMS-rs-FC interaction effects, we plotted the mentalising similarity

predicted by the fitted regression models in the significant regions,

including the right hippocampus and left amygdala (see Figure 7b,c and

Table 2). Consistent with our hypothesis, high-rs-FC similarity amplified

mentalising similarity, such that two individuals who were both similar

2To better illustrate the possible effects, we entered similarities rather than dissimilarities

between subject pairs (as we did in constructing IDMs) into the regression model. For each

mentalising similarity measured by a different distance metric (we have ten different distance

metrics for measuring mentalising similarity, as we mentioned before), we first chose related

MMS and rs-FC similarity computed by the optimal parameter configuration (i.e., the

configuration which offers the highest average Spearman correlation with the mentalising

similarity from bootstrapping). Then we built ten regression models and chose the optimal

model with the highest log-likelihood.
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in right hippocampal (or left amygdala) rs-FC and MMS would have sig-

nificantly higher similarity in SS and SO (or OS).

3.3 | Results of pipelines for constructing inter-

subject MMS dissimilarity matrix

To evaluate whether our proposed pipeline CPP-SD, that is, comput-

ing patching and pooling operations-based surface distance, could

increase the correspondence between MMS IDM and the other IDM,

we compared CPP-SD with pipeline 2 (with patching and pooling

operations but without computing surface distance) and pipeline

1 (without patching and pooling operations and computing surface

distance). Figure 8 shows the comparison of average IDM correspon-

dences from bootstrapping among these three pipelines. Specifically,

we found that pipeline 2-based IS-RSA reveals a significantly stronger

IDM correspondence than pipeline 1-based IS-RSA for 27 cases

(96.43%) (two-sided FDR-corrected Wilcoxon signed-rank tests, simi-

larly hereinafter). Only in 1 case (3.57%, target IDM: rs-FC) the differ-

ence between pipeline 2-based IS-RSA and pipeline 1-based IS-RSA

was not significant, indicating the effectiveness of patching and pool-

ing operations. Compared with pipeline 2, we also found that basing

IS-RSA on CPP-SD further significantly improved the IDM correspon-

dence for 22 cases (78.57%), with 3 cases (10.71%, target IDM: IMQ

IMQ scores

MMS rs-FC

Left amygdala Right amygdala

Left hippocampus Right hippocampus
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*
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-0.1
0.000

000000.1

000000....11113131333030303030044**

000.33128312 *******
0

444***

00. 2141222***
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000.3
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0.56662722 ***

0
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Trinity

F IGURE 6 A trinity existed in idiosyncratic patterns of brain morphometry, connectivity and mentalising ability. The bottom left, bottom right

and top radar charts depict representational similarity (in Spearman rho rank-order correlation units) between IDMs of IMQ scores (including

three different components) and MMS (including bilateral amygdala and hippocampus), IMQ scores and rs-FC (including bilateral amygdala and

hippocampus), and rs-FC and MMS. We used the FDR correction for multiple comparisons across all 40 statistical tests (12 for IMQ-MMS, 12 for

IMQ-rs-FC and 16 for MMS-rs-FC). All correlations were significantly greater than zero (all corrected p-values < .05). Detailed results were

reported in Table S1. *p < .05, **p < .01, ***p < .001.
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scores) that showed significantly worse performance of IS-RSA and

3 cases (10.71%, target IDM: rs-FC) with a non-significant difference.

Together, these results demonstrated that our proposed CPP-SD

robustly improved the correspondence between MMS and the other

two modalities.

4 | DISCUSSION

Social behaviours, to some degree, largely rely on various mentalising

components (Wu, Liu, et al., 2020). However, very little is known

about how variation in these components (i.e., SS, SO and OS)

mapped onto individual variation in the amygdala and hippocampus,

two vital subcortical regions of both the traditionally “mammalian

brain” (MacLean, 1990) and newly developed “social brain” (Bickart

et al., 2014; Montagrin et al., 2018). As a first step toward filling this

gap, the goal of our study was to provide a thorough investigation of

individual differences in mentalising components, amygdala and hip-

pocampal morphometry and connectivity by detecting shared struc-

ture among all three using inter-subject representational analysis (IS-

RSA). Consistent with our Hypothesis 1, we found that a trinity

existed in idiosyncratic patterns of amygdala and hippocampal

TABLE 1 Comparison of average IDM correspondences from bootstrapping among bilateral amygdala and hippocampus.

Comb. Mean [95% CI ] z pFDR Comb. Mean [95% CI ] z pFDR

SS LA 0.3677 [0.3569, 0.3785] LA 0.2094 [0.1995, 0.2194]

RA 0.3947 [0.3861, 0.4034] RA 0.1747 [0.1668, 0.1826]

LH 0.4127 [0.4055, 0.4199] LH 0.1256 [0.1162, 0.1350]

RH 0.5168 [0.5051, 0.5284] RH 0.3434 [0.3348, 0.3520]

LA−RA −0.0270 [−0.0409, −0.0132] −3.90 <.001*** LA−RA 0.0347 [0.0209, 0.0485] −4.82 <.001***

LA−LH −0.0450 [−0.0571, −0.0329] −6.71 <.001*** LA−LH 0.0838 [0.0731, 0.0944] −14.15 <.001***

LA−RH −0.1491 [−0.1695, −0.1286] −13.03 <.001*** LA−RH −0.1340 [−0.1451, −0.1228] −19.35 <.001***

RA−LH −0.0179 [−0.0280, −0.0079] −3.87 <.001*** RA−LH 0.0491 [0.0360, 0.0622] −7.48 <.001***

RA−RH −0.1220 [−0.1358, −0.1083] −15.45 <.001*** RA−RH −0.1687 [−0.1813, −0.1560] −20.61 <.001***

LH−RH −0.1041 [−0.1189, −0.0893] −12.93 <.001*** LH−RH −0.2177 [−0.2258, −0.2097] −26.75 <.001***

SO LA 0.4607 [0.4478, 0.4736] LA 0.1239 [0.1169, 0.1310]

RA 0.3821 [0.3751, 0.3891] RA 0.1359 [0.1266, 0.1452]

LH 0.4678 [0.4601, 0.4755] LH 0.2254 [0.2147, 0.2360]

RH 0.4766 [0.4657, 0.4875] RH 0.2427 [0.2347, 0.2508]

LA−RA 0.0786 [0.0634, 0.0938] −10.21 <.001*** LA−RA −0.0120 [−0.0220, −0.0020] −2.90 .004**

LA−LH −0.0071 [−0.0201, 0.0059] −0.21 .854 LA−LH −0.1014 [−0.1139, −0.0890] −14.25 <.001***

LA−RH −0.0159 [−0.0346, 0.0028] −1.44 .159 LA−RH −0.1188 [−0.1284, −0.1092] −19.78 <.001***

RA−LH −0.0857 [−0.0966, −0.0749] −14.38 <.001*** RA−LH −0.0894 [−0.1048, −0.0741] −10.67 <.001***

RA−RH −0.0945 [−0.1070, −0.0820] −13.51 <.001*** RA−RH −0.1068 [−0.1197, −0.0939] −14.65 <.001***

LH−RH −0.0088 [−0.0230, 0.0055] −1.51 .144 LH−RH −0.0174 [−0.0265, −0.0083] −3.86 <.001***

OS LA 0.2890 [0.2801, 0.2980] LA 0.3164 [0.3078, 0.3250]

RA 0.5153 [0.5051, 0.5255] RA 0.2890 [0.2788, 0.2993]

LH 0.3548 [0.3453, 0.3643] LH 0.2861 [0.2742, 0.2980]

RH 0.4433 [0.4321, 0.4544] RH 0.1682 [0.1538, 0.1825]

LA−RA −0.2262 [−0.2411, −0.2114] −22.29 <.001*** LA−RA 0.0274 [0.0130, 0.0418] −3.82 <.001***

LA−LH −0.0658 [−0.0771, −0.0544] −10.75 <.001*** LA−LH 0.0303 [0.0160, 0.0446] −3.85 <.001***

LA−RH −0.1542 [−0.1646, −0.1438] −21.94 <.001*** LA−RH 0.1483 [0.1334, 0.1631] −16.80 <.001***

RA−LH 0.1605 [0.1474, 0.1735] −19.75 <.001*** RA−LH 0.0029 [−0.0136, 0.0195] −0.03 .975

RA−RH 0.0720 [0.0583, 0.0857] −9.34 <.001*** RA−RH 0.1209 [0.1028, 0.1389] −11.96 <.001***

LH−RH −0.0884 [−0.0971, −0.0797] −17.46 <.001*** LH−RH 0.1179 [0.1066, 0.1293] −17.23 <.001***

(a) Comparison of average IDM correspondences (IMQ‐MMS) (b) Comparison of average IDM correspondences (IMQ‐rs‐FC).

Note: “Comb.” for combinations; “LA” for the left amygdala; “RA” for the right amygdala; “LH” for the left hippocampus; “RH” for the right hippocampus.

Mean values and 95% confidence intervals (numbers in parentheses) were obtained by bootstrapping subjects. All the z‐values and p‐values were derived

from two‐sided Wilcoxon signed‐rank tests. We used FDR correction for multiple comparisons across all 36 statistical tests (18 for IMQ‐MMS and 18 for

IMQ‐rs‐FC).
**p < .01
***p < .001.
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morphometry, connectivity and mentalising ability (Figure 6), advanc-

ing our understanding of the neural basis of mentalising. In this regard,

our study also served as a proof of principle for using IS-RSA to

directly link (i.e., bypassing the problem of defining sophisticated map-

ping functions between different modalities) idiosyncratic patterns of

the above three modalities. Our IS-RSA-based trinity framework could

easily transfer to other brain regions and is straightforward to imple-

ment. In this respect, we believe that it is a powerful starship by which

we could go where no one has gone before and specifically move

from asking simple questions about mentalising ability to asking how

individual variations emerge from complex social interactions and

what neurocognitive mechanisms underlie these variations.

In line with our Hypothesis 2, we also obtained a region-related

specificity in associations among mentalising components and amyg-

dala or hippocampal MMS and rs-FC (Table 1a and b). The specificity

is in three aspects. First, the variation of SS, that is, meta-cognition,

exhibited greater representational similarity to individual variation in

hippocampal MMS or rs-FC relative to amygdala MMS or rs-FC,

(b) MMS-rs-FC interaction:
Estimated effects
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𝛽

F IGURE 7 (a) The interaction between MMS and rs-FC similarity drove the similarities of all three mentalising components; (b) Simulating

mentalising similarity from the regression model revealed that rs-FC similarity amplified mentalising similarity: MMS similarity more strongly

predicted mentalising similarity in subject pairs with similar rs-FC (high-rs-FC similarity); (c) Estimated marginal effects for mentalising similarity by

rs-FC similarity (lower quartile, Q1, and upper quartile, Q3) confirmed this interpretation: High-rs-FC similarity boosted mentalising similarity in

subject pairs with high-MMS similarity and lowered mentalising similarity for dyads with low-MMS similarity. Shaded areas denote 95%

confidence intervals; Sub-figure (a), (b) and (c) were visualised by using BrainNet Viewer (Xia et al., 2013), Matplotlib (Hunter, 2007) and seaborn

(Waskom, 2021) respectively. Regression coefficients were reported in Table 2.
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indicating a close association between the meta-cognition and hippo-

campus. This result dovetails with previous research which has con-

firmed that hippocampal function (Ye et al., 2019; Zou & Kwok, 2022)

and structure (Alkan et al., 2020; Allen et al., 2017) are highly corre-

lated with meta-cognition. Further, given the essential role meta-

cognition plays in other mentalising components according to interac-

tive mentalising theory (Wu, Liu, et al., 2020), our finding supports the

motivation to decipher the importance of the hippocampus during

dynamic social interaction. Second, the variation of SO also showed

greater representational similarity to individual variation in hippocam-

pal MMS or rs-FC relative to amygdala MMS or rs-FC. There are two

theoretical bases by which the hippocampus supports SO. Relational

integration theory (O'Keefe & Nadel, 1978; Rubin et al., 2014) posits

that the hippocampus buttresses various functions, such as memory,

spatial reasoning and socialisation, through cognitive mapping, which

denotes the capacity to organise and bind conceptual relationships

(Eichenbaum et al., 1999; Schiller et al., 2015; Tolman, 1948). Con-

structive memory theory (Schacter, 2012) argues that how we retrieve

and re-encode our memories can influence our sense of other individ-

uals in the social milieu. Our finding is among the first to present addi-

tional evidence on the inter-individual level supporting the crucial role

of the hippocampus in social cognition. Third, the variation of OS pre-

sented greater representational similarity to individual variation in

amygdala MMS or rs-FC relative to hippocampal MMS or rs-FC. A

plethora of literature has illustrated the importance of the amygdala in

mentalising (Rice et al., 2014; Stone et al., 2003), especially in complex

TABLE 2 MMS and rs-FC similarity

of the hippocampus and amygdala (right

hippocampus, RH, left amygdala, LA, and

right amygdala, RA) interacted to drive

the similarities of all three mentalising

components, as shown in Figure 7. Each

model included crossed random effects

for subjects and fixed effects for MMS

similarity (z-scored), rs-FC similarity (z-

scored) and their interaction, with

mentalising similarity (z-scored) as the

outcome variable.

Comb. Term β SE t df p

SS-RH MMS similarity 0.272 0.048 5.62 494.2 <.001***

rs-FC similarity 0.057 0.026 2.22 525.8 .027*

MMS similarity � rs-FC similarity 0.159 0.019 8.23 502.4 <.001***

SO-RH MMS similarity 0.084 0.031 2.70 532.3 <.007**

rs-FC similarity 0.002 0.028 0.07 524.3 .944

MMS similarity � rs-FC similarity 0.050 0.021 2.33 505.7 .020*

OS-LA MMS similarity 0.181 0.040 4.52 547.6 <.001***

rs-FC similarity 0.010 0.031 0.32 529.1 .746

MMS similarity � rs-FC similarity 0.046 0.023 2.00 508.2 .046*

OS-RA MMS similarity �0.009 0.034 �0.27 538.0 .789

rs-FC similarity 0.055 0.025 2.18 515.8 .030*

MMS similarity � rs-FC similarity �0.033 0.020 �1.68 506.0 .094

Note: ‘Comb.’ for combinations.

*p < .05.**p < .01.***p < .001.

Pipeline 1

P
ip

e
li

n
e

2

C
P

P
-S

D

Pipeline 2

Target IDM

IMQ scores

rs-FC

Target IDM

IMQ scores

rs-FC

(a) (b)

F IGURE 8 Comparison of average IDM correspondences from bootstrapping among three pipelines. (a) Pipeline 2-based (with patching and

pooling operations but without computing surface distance) IS-RSA reveals a stronger IDM correspondence than pipeline 1-based (without

patching and pooling operations and computing surface distance) IS-RSA for all 28 comparisons. Among them, pipeline 2-based IS-RSA

significantly outperformed pipeline 1-based IS-RSA in 27 cases, usually leading to increases in the representational similarity between two IDMs;

(b) For most comparisons, basing IS-RSA on CPP-SD (computing patching and pooling operations-based surface distance) further improved the

IDM correspondence. Of all 28 comparisons, CPPSD-based IS-RSA significantly outperformed pipeline 2-based IS-RSA in 22 cases, often leading

to increases in the representational similarity between two IDMs. The figure was visualised using seaborn (Waskom, 2021).
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social interactions, such as trust or deception (Eskander et al., 2020;

Haas et al., 2015; Koscik & Tranel, 2011; Santos et al., 2016). In con-

cert with these studies, our result suggests a close link between OS, a

higher-order mentalising component for the rich and complex social

life, and the amygdala.

Finally, in favour of our Hypothesis 3, we found that high-rs-FC

similarity boosted mentalising similarity in subject pairs with high-

MMS similarity and lowered mentalising similarity for dyads with low-

MMS similarity by leveraging the dyadic regression analysis (Figure 7).

As far as we know, no previous study has directly examined the inter-

action between brain morphometry and connectivity in predicting

mentalising ability. Exploring such interaction is essential for elucidat-

ing the brain structure–function relationship, as recent studies dem-

onstrate that FC links to the brain structure or structure connectome

(Caparelli et al., 2017; Levakov et al., 2021; Sorrentino et al., 2021;

Van Den Heuvel et al., 2009). Such a link, to some degree, has also

been suggested to be abnormal in depression (Yun & Kim, 2021) and

ASD (Hong et al., 2019). For instance, it might advance our under-

standing of ASD, as the complex nature of altered hippocampal

structure–function interaction is evident in ASD (Banker et al., 2021).

Our results thus provide additional evidence on this topic and offer

further insights into social neuroscience that the brain structure dif-

ferences may drive the levels of mentalising ability, which may be

modulated by individual variations of rs-FC.

Our study also makes two methodological contributions to the

research community. First, it provides CPP-SD, a buttress against

high-dimensional MMS data, thus paving the way for using MMS data

in IS-RSA. The reason for the superiority of our proposed CPP-SD

over other pipelines (Figure 8) may be that patching and pooling oper-

ations over the surface could filter the noisy values, and computing

surface distance based on these operations could offer a characterisa-

tion of surface-internal representations, which may further promote

this effect. Second, our study provides a preliminary attempt

(i.e., using grid search and subject-wise bootstrapping) to disentangle

different parameter configurations in constructing IDMs. Although

this approach may have a high computational load (depending on data

type), it does not need to require specifying the specific parameter

beforehand, for example, the distance metric, which may represent

some inappropriate assumptions about the structure of the brain-

behaviour representational similarity (Finn et al., 2020) and thus lead

researchers to underestimate this similarity. For example, different

from the previous work (Chen et al., 2020), which suggests significant

associations in IS-RSA only hold when using the multivariate repre-

sentations, we found that the multivariate (item-wise dissimilarity)

and univariate IMQ representations (the dissimilarity of composite

score) are both essential to get the best performance (i.e., the highest

correspondence between two IDMs) (Figure 9). Our results indicate

that both representations (constructed by the optimal parameter con-

figuration obtained via grid search and bootstrapping) are theoretically

appropriate, and each may capture different effects.

The present study is only a first step toward capturing the neural

underpinnings of inter-individual variability in different aspects of

social mentalising, and several limitations should be acknowledged.

One potential limitation of our study, which probably has reduced the

statistical power and increased the possibility of type II errors

(Columb & Atkinson, 2016), is the relatively small number of partici-

pants (N¼24). Future work should try to replicate this study in larger

samples and in a more nuanced way. Second, we did not unravel the

potential lateralisation effects of the amygdala or hippocampus in our

study. We caution against strong interpretations for lateralisation

effects in our results because we had no prior specific hypotheses

regarding lateralisation, and the lateralisation effects we observed are

likely due to statistical thresholding effects. Third, we investigated

how variation in rs-FC between the amygdala or hippocampus and

other 115 brain regions mapped onto individual differences in the

other two modalities. This means we could not reveal the contribution

of rs-FC between the amygdala or hippocampus and specific brain

regions or networks in the trinity. Future studies might uncover this

IMQ-MMS IMQ-rs-FC

(a) (b)
6

3
1

2

6

2

1
3

7
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1
2
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2
1

Multivariate Univariate

Euclidean

Mahalanobis 

Pearson

Cosine

AnnaK (min)

AnnaK (abs*mean)
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F IGURE 9 Comparison of winning IMQ representations. (a) In 12 cases for IMQ-MMS, the multivariate (i.e., item-wise dissimilarity) and

univariate representations (i.e., the dissimilarity of composite score) are on par (6 vs. 6) in determining the highest IDM correspondence;

(b) Similarly, in 12 cases for IMQ-rs-FC, the multivariate and univariate representations have almost equal shares (5 vs. 7) in the resulting highest

IDM correspondence. The outer ring of the doughnut plot reflects representational indices (multivariate or univariate) of IMQ scores; the inner

ring reflects the indices of the related distance metric (Pearson distance, Euclidean distance, Mahalanobis distance and cosine distance for

construing the multivariate IMQ representations; Anna Karenina distances, including minimum distance and the product of the absolute and

minimum distance, and reversed Anna Karenina distance, that is, maximum distance, for construing the univariate IMQ representations). The

figure was visualised using Matplotlib (Hunter, 2007).
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by examining the rs-FC between the amygdala or hippocampus and

some brain regions of interest, for example, the TPJ (Biervoye

et al., 2016; Bitsch et al., 2019), precuneus (Ye et al., 2019), cerebel-

lum (Metoki et al., 2022) and angular gyrus (Zou & Kwok, 2022), or

even the brain networks, for example, the default mode network

(Yeshurun et al., 2021).

5 | CONCLUSION

The current work defines an integrative trinity framework that pro-

vides a testable basis for understanding individual differences in brain

morphometry, connectivity and mentalising ability. Our study reveals

the existence of a region-related specificity: the variation of SS and

SO are more related to individual differences in hippocampal MMS

and rs-FC, whereas the variation of OS shows a closer link with indi-

vidual differences in amygdala MMS and rs-FC. Additionally, our data

suggest that rs-FC gates the MMS predicted similarity in mentalising

ability, revealing the intertwining role brain morphometry and connec-

tivity play in social cognition. Broadly speaking, it is important to note

that our mentalising ability to transition from an egocentric to an allo-

centric perspective, to appreciate, understand, predict and adapt to

the intentions, thoughts and beliefs of others, makes us truly human.

Ergo, to build a community with a shared future for mankind in

today's world, which is undergoing significant changes unseen in a

century, understanding the neural underpinnings of individual differ-

ences in different mentalising components has never been more criti-

cal than today.
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