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Abstract—User location is of critical importance to cellular
network operators. It is often used for network capacity planning
and to aid in the analysis of service and network diagnostics.
However, existing localization techniques rely on user-provided
information (e.g., Angle-of-Arrival), which are not available to the
operator, and often require a significant effort to collect training
data. Our main contribution is the design and evaluation of the
Network-Based Localization (NBL) System for localizing a user
in a 4G LTE network.

The NBL System consists of 2 stages. In an offline stage,
we develop RF coverage maps based on a large-scale crowd-
sourced channel measurement campaign. Then, in an online
stage, we present a localization algorithm to quickly match RF
measurements (which are already collected as part of normal
network operation) to coverage map locations. The system is
more practical than related works, as it does not make any
assumptions about user mobility, nor does it require expensive
manual training measurements. Despite the realistic assumptions,
our extensive evaluations in a national 4G LTE network show
that the NBL System achieves a localization accuracy which is
comparable to related works (i.e., a median accuracy of 5% of
the cell’s coverage region).

Index Terms—Localization, wireless networks, crowd-sourcing.

I. INTRODUCTION

The size and complexity of cellular networks continue to
grow, with upcoming 5G networks expected to handle 1000-
fold increases in the amount of traffic and 100-fold increases
in the number of users [1], [2]. To address these ever-growing
requirements, cellular networks are becoming ever-more com-
plex, with operators deploying heterogeneous cells composed
of macro cells, small cells, distributed antenna systems, etc.
Each deployment must be controlled through thousands of
configuration parameters. Thus, managing and monitoring the
network through manual processes is not feasible. Instead, op-
erators are moving towards an automated measurement-driven
approach to network control and management (e.g., [3]).

As part of the network control and management, cellular
operators collect extensive amounts of log information from
all users and cell towers. The terminology for this data varies
by vendor and operator; we will refer to this data as User
Measurement Data (UMD) [4]. As shown in the left side
of Fig. 1, the data is collected through the cellular network
and streamed to a number of network edge locations. For
example, over 3.5TB of 4G LTE UMD is collected per day in
the network edge location studied in this work (owned by a
top-3 network operator). The data contains a comprehensive
set of measurements for every call and data session by every
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Fig. 1. User Measurement Data (UMD) collection and Network-Based
Localization (NBL) System architecture.

user. This includes metrics such as throughput, latency, and
RF measurements (RSRP, RSSI, etc.) as well as diagnostics
such as dropped call information. As such, UMD is a prime
source of information to drive automated network control.

However, since UMD is collected by the network, it does not
contain any user-provided location information (i.e., GPS). Yet
the value of such location information is clear; for the network
operator, it can be used to (i) identify location hotspots
for capacity planning, (ii) identify gaps in RF coverage,
(iii) troubleshoot network anomalies, and (iv) locate users in
emergency situations (E911).

Numerous techniques for localization in cellular networks
exist, including methods based on time of arrival, time-
difference of arrival, angle-of-arrival, cell-ID, and received
signal strength fingerprinting ([5], [6], [7]). However, due to
complex RF propagation phenomena (e.g., multi-path, fast
fading) and the limited number of measurements provided in
UMD records, model-driven techniques, such as RF triangu-
lation, are not effective [8], [4].

On the other hand, RF fingerprinting is a data-driven ap-
proach to localization which makes use of the reproducibility
of the received signal strength measurements. In a training
phase, a fingerprint of the RF signature is empirically mea-
sured and stored for each geographical location. Then, in an
online phase, the UMD channel measurements are matched
to the location with the closest RF signature. However, the
process of collecting training data is quite expensive and con-
sists of two possible methods: war-driving or crowd-sourced
measurements. War-driving involves specialized equipment
placed in a vehicle and used to measure the RF signatures
along roads and has 2 main challenges: (i) it requires a
significant effort to collect and therefore there is poor coverage
(e.g., non-road areas), and (ii) the RF measurements of the



specialized equipment are not always representative of the
RF measurements for everyday users. Using crowd-sourced
training data is difficult because everyday devices can only
measure LTE RF signals to a few cells at a time. Thus,
obtaining a detailed RF coverage map from crowd-sourced
data requires a significant number of users reporting data over
a long period of time.

In this work, we leverage training data from a first-of-
its-kind crowd-sourced channel measurement campaign to
design the Network-Based Localization (NBL) System. The
system estimates user’s locations in a 4G LTE network from
their UMD records. The outline of the paper is as follows.

In Section III, we describe 4G LTE channel measurements,
focusing on the parameters which will be used for localization.
Notably, these include the Reference Signal Received Power
(RSRP), the Received Signal Strength Indicator (RSSI), and
the Propagation Distance (PD). Based on these parameters,
which are reported as part of UMD to the network edge, the
NBL System estimates the user’s location.

In Section IV, we describe the offline training phase of the
NBL System which involves building a coverage map from
a crowd-sourced measurement campaign, termed GPS Tagged
User Measurement Data (GUMD). The data is collected from
a subset of network users, each of which has a software
application installed to periodically send GPS-tagged RSRP
and RSSI measurements to a centralized network server. We
condense over 100TB of GUMD from over 4 million users
into a coverage map, demonstrating that bivariate normal
distributions can be used as a good approximation of the RF
coverage in each fingerprint location.

Section V describes the online stage of the NBL System.
We present an algorithm to assign weights to each location in
the network based on the UMD measurements of the RSRP,
RSSI, and PD. Additionally, the algorithm incorporates a pre-
computed population density. Based on the assigned weighting
to each grid location, the algorithm utilizes two probabilistic
methods to estimate the user’s location: a maximum likelihood
estimator or a weighted average estimator. The algorithm is
computationally quick and able to be deployed at the network
edge, handling thousands of users per second.

Finally, in Section VI, we perform an extensive evaluation
of the NBL System. By matching GPS records from GUMD to
the UMD records collected from a national cellular operator,
we obtain a data set of ~200,000 test cases. We analyze
the test cases in detail for various parameters of the system,
including geographic region (rural vs. urban), coverage map
resolution, and number of cell measurements in a record.
Furthermore, we demonstrate the improvements in localization
accuracy achieved by incorporating parameters that are not
typically considered (i.e., population density estimates). We
show that the NBL System can shrink the area of uncertainty
around a user’s location to less than 5% of the cell’s coverage
range. This corresponds to a median accuracy of 50m and
300m for urban and rural areas, respectively. Additionally, we
describe numerous practical aspects of the system, including
the deployment considerations and computation time.
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Fig. 2. Network collected UMD: The user periodically reports its measure-
ments to the operator including RSRP, RSSI, and PD.

The main contributions of this work are:

o The NBL System: We design and develop the NBL
System which collects and analyzes large-scale GUMD
into a first-of-its-kind crowd-sourced RF coverage map.
We then propose an algorithm to match UMD records
composed of RSRP, RSSI, and PD measurements to
coverage map locations.

o Large-scale system evaluation, with comparable accu-
racy: Using UMD from a national cellular operator, we
evaluate the NBL System, showing that the localization
error achieved is comparable to related works, albeit with
no assumptions on user mobility. To the best of our
knowledge, this is the first large-scale evaluation of a
cellular localization system.

o Practicality: We demonstrate the practicality of the NBL
System; it can be deployed at network edge locations
and handle location lookups for thousands of UMD
records per second. Furthermore, it can scale for national
networks as it replaces extensive war-driving training
measurements with crowd-sourced data.

II. RELATED WORK

Localization in wireless networks is a well-studied field,
with approaches that utilize time of arrival, time-difference of
arrival, angle-of-arrival, cell-ID, and received signal strength
(see [5], [6], [7] and references therein). Model driven ap-
proaches typically use geometric techniques to triangulate
the user from 3 or more channel measurements to nearby
access points (e.g., signal strength, angle-of-arrival). However,
because we focus on network based localization from UMD,
there is not enough information to triangulate the user [4].

Data-driven approaches to cellular localization utilize an RF
fingerprint map to match a user’s signal strength measurements
to locations [9], [4], [5]. These techniques require training
measurements, which are usually collected by placing spe-
cialized network signal measurement equipment in the back
of a vehicle as it slowly traverses roads and records location
and signal strength information, a process termed war-driving.
However, war-driving does not cover all areas in the network
(i.e., non-roads or major highways). Furthermore, there can
be differences between the signal measured by the special
equipment, and that measured by a user’s smartphone. Unlike



TABLE I
COMPARISON OF THE NBL SYSTEM TO RELATED WORK IN DATA-DRIVEN LOCALIZATION FOR CELLULAR NETWORKS

Prior Work Training Data Collection Testbed Size/Location Technology Parameters Accuracy/Assumptions
Method Collected

CellSense [5] War driving 1 rural and 2 urban GSM RSSI Median error of 27-56m, but requires >8 cell measure-
testbeds in Egypt ments.
(~10km?)

PF?S 9] War driving 4 routes in New Jersey 3G E./N,, RSSI Median error of 23m, but assumes a mobile user with
(~30km?) a-priori knowledge of route and trajectory information.

Ray et. al. [4] War driving 1 testbed in New York | 4G LTE RSRP, RSSI Median accuracy of /~25m, only in urban environment
City (=10km?) for mobile users, and requires extensive per-user training

for location-transition probabilities.

Network- Crowd-sourced USA-based national net- 4G LTE RSRP, RSSI, Reduction in localization uncertainty to 5% of the cell

Based work (/27,000,000km?) PD, Pop. coverage area, corresponding to a median localization

Localization Density error of 50m in urban environments. Works with mobile

(NBL) or static users and any number of measurements.

prior work, the NBL System utilizes a first-of-its-kind channel
measurement campaign based on crowd-sourced training data
spanning the entire network of a major US network operator.
We contrast the NBL System with the closest related works
in Table L.

In addition, a lot of effort has recently been spent in the area
of indoor wireless localization for WiFi, RFID, and Bluetooth
networks [10], [11], [12]. Due to the limited covered areas,
there is significantly less effort required to obtain training
measurements. Additionally, these works typically assume that
users provide information such as angle-of-arrival or time-
difference of arrival, which are not always available in UMD.

Finally, there has been numerous works focusing on mobile
trajectory tracking (e.g., [9], [4], [13], [14]). These techniques
match a time-series of UMD records to a route. Thus, they
only work with mobile users. The NBL System does not
assume that users are moving and thus does not incorporate
any trajectory tracking methods.

III. SYSTEM METHODOLOGY

In this section, we describe an overview of 4G LTE chan-
nel states as they pertain to localization [15], as well as a
description the UMD collection methodology.! Based on the
measurements included in the UMD, we then formulate the
localization problem and outline the NBL System.

A. 4G LTE Background

In the 4G LTE network, basestations (also known as eN-
odeBs), consist of a number of cell sectors, as shown in
Fig. 2. The sectors are multiplexed together spatially (using
sectorized antennas) and using frequency division duplex. In
this paper, we will use the terms cell and sector synonymously.
Each cell establishes data sessions with users using Orthogonal
Frequency Division Multiple Access (OFDMA). In OFDMA,
users are allocated radio resources that span time and fre-
quency dimensions.

For cell selection and handover, each user must estimate
its channel quality to neighboring cells. To enable this, every

'All data collected as a part of this project has gone through internal
legal and regulatory review, and is only used in anonymous and aggregate
ways in accordance with our publicly available privacy policy. No personally
identifiable information (PII) is included. The use of fine-grained location
data is only used to determine cell coverage maps and only for network
applications.

downlink OFDMA frame contains a set of reference signals
(typically 4). The reference signals are in predefined locations
within the OFDMA time-frequency grid such that they capture
a range of frequencies and the interference of reference sig-
nals between neighboring cells is minimized. Based on these
reference signals, the following parameters are computed:

Definition 1: The average received power from the reference

signals in an OFDMA frame to a neighboring cell, as com-
puted by the user, is termed the Reference Signal Received
Power (RSRP).
As a measure of power, its units are in dBm and the reporting
range is between -140dBm and -44dBm. Although it is not
directly a measure of channel quality as it does not incorporate
noise, a strong RSRP often implies the user is close to the cell
center and therefore has a strong channel quality.

Definition 2: The total received power in the frequency band

including power from serving and non serving cells, adjacent
channel interference, and thermal noise, is computed by the
user and termed the Received Signal Strength Indicator
(RSSD).
In practice, the RSSI measurement is used to compute the
quality of the RSRP measurement, as compared to other in-
terfering sources. Specifically, the Reference Signal Received
Quality (RSRQ), is computed as,

RSRP;
RSRQi = poeT

where ¢ represents a cell-specific index. Figuratively, RSRQ
is the fraction of received power from a neighboring cell to
the total received power, akin to a signal to interference plus
noise ratio. As it is a ratio of power measurements, its units
are in dB.

The received signal strength measurements (RSRP, RSSI)
are spatio-temporal random processes. The random variation
as a function of time, even at a fixed location, is termed fast-
fading and characterized by rapid fluctuations in the received
signal strength (due mainly to multipath) [16]. The randomness
due to changes in location, path loss, or shadowing, which
occurs on the order of seconds, is termed slow-fading. In
Section IV, we use training measurements to capture the slow-
fading components of the signal strength measurements and
average out the fast-fading components.

For uplink channel scheduling purposes, the cell must
estimate the user’s propagation delay, referred to as the timing

-(Number of Resource Blocks for Cell i),



TABLE II
UMD RECORD TYPES

Initiation Event

Record Name | [ 3GPP Standard

|

Initial Attach MME receives the Attach Request from the TS 23.40 v9.3.0,
cell/user Section 5.3.2

Context The cell detects user inactivity and requests TS 23.401v8.6.0,

Release the MME to remove the user’s session Section 5.3.5

MME receives notification that data is
available for the user

TS 23.401v8.6.0,
Section 5.3.4.3

Paging (Down-
link Data Noti-

fication)
Service User initiates a data connection TS 23.401v9.3.0,
Initiated Section 5.3.4.1

advance. The serving cell measures the timing advance in
units of symbol time (typically 32.6ns). The user preempts
it’s transmission by the timing advance, such that all user’s
transmissions arrive at the cell at the start of the slot. Based
on the timing advance, the cell computes the propagation
distance:

Definition 3: The distance that the strongest component of

the cell reference signal travels to reach the user is termed the
Propagation Distance (PD).
In practice, the PD can have numerous errors and inaccuracies.
For example, there is quantization error due to the discrete
symbol time (each symbol time effectively translates to a dis-
tance of approximately 10m). Additional errors are introduced
due to movement of the user, changes in the propagation
environment (e.g., loss of line of sight), and drift in the user’s
oscillator clocks.

Although the above parameters can be computed by the user
on the millisecond level, the measurements will only be logged
by the network when triggered. As specified via standards, the
common triggers are:

o Event Al: The RSRP to the serving cell becomes better

than a threshold.

+ Event A2: The RSRP to the serving cell becomes worse

than a threshold.

o Event A3: The RSRP to a neighbor cell becomes better

than an offset relative to that of the serving cell.

« Event A4: The RSRP to a neighbor cell becomes better

than a threshold.
Note that the operator can configure (to some degree) the
frequency of these events by adjusting the thresholds or
hysteresis periods. The data collected from these events form
the basis of the UMD.

B. User Measurement Data (UMD)

Operators collect and store network log information for
network diagnostics, policy enforcement, and billing purposes.
The information is passively collected, with records generated
according to network events (e.g., session initiated, handovers,
etc). The data collection is transparent to the user; the operator
controls exactly which parameters it collects and the frequency
of its collection. We term this data User Measurement Data
(UMD).

In a typical deployment, UMD is collected at the cell
and forwarded to a centralized network component (e.g., the
Mobility Management Entity (MME)). Due to bandwidth and
CPU constraints at the cell, not every parameter can be

collected at high frequency and the collection methodology
is largely vendor specific. In our configuration, the raw UMD
is aggregated at each of the network edge servers. Often, these
locations are termed National Technology Centers (NTCs).
The vast amount of traffic and data collected requires that
the UMD be handled at the network edge as it is too costly to
transport to a central location. Thus, the UMD must be parsed
at the network edge and a computationally fast localization
method must be provided.

There are numerous implementations of UMD by various
venders. In this work, we will exclusively study and utilize
Per Call Measurement Data (PCMD) [17] provided by Alcatel
Lucent cells and MMEs in the network of a major telecom-
munications network. As shown in Fig. 1, the cell forwards
UMD over a control channel to the MME, which aggregates
records from each of the cells in its domain and forwards the
data to a cloud storage server.

A few of the common PCMD events are described in
Table II. As shown in Fig. 3, an example user will have
between 500-4000 PCMD records in a day, varying based
mainly on user mobility and data consumption. Of particular
interest to this work, each PCMD record contains information
on the user’s RSRP, RSSI, and PD to nearby cell sectors.
In a given NTC, this results in approximately 3.5TB of
uncompressed UMD collected each day. During the busiest
hours of the day, data (in compressed form) is collected at
over 100Mbps.

C. Problem Description

As indicated in Fig. 1, UMD records are streamed to the
network edge. The NBL localization problem is to determine
the location of the user at the time that each record is
generated. We do not assume that a user is mobile; this is in
contrast to many prior works which attempt to track the pattern
of UMD to match a user to a route or trajectory (e.g., [4],
[9]). Therefore, we focus our formulation on a single user at
a single time instant.

Each record contains a set of RSRP, RSSI, and PD measure-
ments, denoted as R, Q, P, respectively. Each set is composed
of a set of zero or more measurements to nearby cells,
correspondingly denoted as R;,(Q);, P; where the cells are
indexed from 1 to N. Thus, the sets are represented as

R={R1,...Rn}, Q@ ={Q1,...Qn}, P={P1,...Pn}.
Each UMD record contains measurements for a small subset
of the cells in the network (typically between 1-3), and the
dimensionality of each measurement type need not be the
same. For example, the PD is often only reported for the
serving cell whereas RSRP and RSSI can be reported for
multiple neighboring cells. To increase the dimensionality of
the reported data, records generated within 2s of one another
are joined together and treated as a single test case.

Based on the observed measurements, the problem is to
estimate the user’s location such that the distance between the
user’s true location and their estimated location is minimized.
However, we note that localization error can be deceiving as



Day of Month

Fig. 3. Frequency of UMD records for a single
user over a month.

TABLE IIT
COVERAGE MAP GRID SIZING
Zoom Level Grid Width Grid Area File Size
16 411-522m 169107-274138m? 1.0 GB
17 205-261m 42279-68534m? 1.7 GB
18 103-131m 10570-17133m? 2.7 GB
19 51-65m 2642-4283m? 4.0 GB
20 26-33m 661-1071m? 5.2 GB
21 13-16m 165-268m? 5.7 GB

it does not account for the sizing of the cell coverage area.
Hence, we also will consider a performance metric termed
the localization uncertainty, which represents the localization
error normalized by the distance covered by the cell in which
the user resides. The localization uncertainty can be interpreted
as the degree of uncertainty in the user’s location, compared
to a cell-ID based localization estimate (which corresponds to
100% uncertainty).

D. The Network-Based Localization (NBL) System

The NBL System consists of an offline phase and an online
phase. In the offline phase, a coverage map is built, mapping
RF measurements (e.g., RSRP, RSSI) to locations. Then, in the
online phase, UMD records are streamed online to the network
edge, where they are matched to coverage map locations. The
matching is based on an algorithm which assigns weights to
coverage map locations corresponding to their similarity (or
difference) to the measurements in the UMD. We detail the
offline and online phases of the system in Sections IV and V,
respectively.

IV. OFFLINE PHASE: THE COVERAGE MAP

In this section, we describe the offline phase of the
NBL System, consisting of collecting crowd-sourced training
data and processing it into an RF coverage map.

A. GPS-Tagged UE Measurement Data (GUMD)

In this work, we generate RF coverage maps based on
crowd-sourced measurement data, termed GPS-Tagged UE
Measurement Data (GUMD). The data is collected from
a sample of smartphone-based users on the network. Each
smartphone has a proprietary application installed which pe-
riodically reports it’s RF channel measurements (among other
metrics) to a central server. The generated records contain data

Cell Coverage Area (k‘m?)
Fig. 4. Experimental distribution of cell cov-
erage area (km?) for 3 million cells.
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similar to the UMD records described above (e.g., including
RSRP, RSSI), although a key difference is that they contain
GPS location information.

In this work, we utilize a snapshot of all GUMD collected
from an operational 4G LTE network from January 2016
through July 2016. In total, this involves over 12 TB of
compressed data (or ~100TB uncompressed) from over 4
million unique users. Unlike UMD, which is collected in the
network by the operator, GUMD is sent over a data connection
from the user to a centralized server. The data is aggregated
and stored in a new file each day. The value of this data
is clear; it provides location-based training information upon
which we build a coverage map.

In total, we collected GUMD data from over 3 million cells.
The area covered by each cell varies due to a number of
factors, the primary of which is the geographical region. As
shown in Fig. 4, the typical coverage area for a cell ranges up
to 1 and 4km?2, for urban and rural environments, respectively.

In addition to generating coverage maps (in Section IV-B),
we use the GUMD data to obtain the distribution of the
error for PD measurements. That is, we correlated 100,000
PD measurements from UMD with the GPS locations from
GUMD. The distribution of the error in the measurements? is
shown in Fig. 5. The mode of the distribution is close to Om.
However, there is quite a large range in the accuracy of the
PD measurements, due to multi-path propagation, processing
times, clock synchronization, and numerous other affects due
to vendor implementation. We store the empirical density from
Fig. 5, and denote it as fpp(-).

B. Generation Methodology

An RF coverage map aggregates the raw RSRP and RSSI
measurements (see Fig. 6(a)) for each grid location covered
by the network. The generation of a coverage map consists
of 3 stages: (i) select a representative grid of locations in the
network, (ii) map training measurements to each location, and
(iii) compute statistics of the RF measurements in each grid
location.

2We compare the estimated PD from UMD to the true distance from the
cell tower in GUMD.
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square, and (c) the mean RSRP computed in each grid location.

1) Grid: To discretize the coverage area, we overlay a grid
consisting of a set of points £. In a small covered area, it is
easy to compute a set of grid locations which are uniformly
spaced. However, for the large scale network evaluated in this
work and due to the curvature of the earth, it is non-trivial to
create a uniformly spaced grid.

To obtain a nearly-uniform set of points across the net-
work, we utilize OpenStreetMap (OSM) tiles for our grid
locations [18]. The grid locations are generated by projecting
the earth into a 2-dimensional rectangle, then dividing that
rectangle uniformly into a set of points. The spacing between
the points is dictated by a zoom parameter of the OSM tiles as
well as the relative location of the point to the earth’s equator.
For a zoom level of z, the earth is split into a grid of 2% x 27
points. The resulting distance between grid points is presented
in Table IIT for a few zoom levels, with the distance range
presented for all points across the continental USA.3

Clearly, fewer grid points will result in a more condensed
coverage map and thus a faster lookup. However, the grid
spacing also provides the resolution for localization accuracy;
that is, a sparse grid does not allow precise localization.
Furthermore, with the crowd-sourced measurement campaign,
there is a trade-off between grid size and inclusion vs. dilution.
With larger grid sizes, there will be more sample data grouped
together at each grid location. However, if the grid is too
sparse, then each grid location will become diluted with
measurements that are not representative of the RF coverage
at that grid location.

2) Map: In the map step, each record is mapped to the
nearest | € L. Before the mapping can occur however, we
must first pre-process the records to eliminate records which
have inaccurate GPS measurements. Specifically, we discard
any record with a reported GPS accuracy greater than 20m.
To handle the vast quantities of data, a Hadoop MapReduce
job is used, taking only 1-3 hours to complete the mapping
of all 100TB of GUMD.

3) Compute and Store: After each record has been assigned
to a grid location, we must then simplify the information into

3We note that, although RF fingerprint gridding is not a new concept [5],
due to the geographical scale of this evaluation, dividing the earth into OSM
tiles results in non-homogenous OSM tile sizes.

a coverage map. Fig. 6(b) shows the distribution of RSRP
measurements for the points falling within the grid location
indicated by a black square in Fig. 6(a). As is immediately
apparent, the RSRP measurements in that location appear to
follow a Gaussian distribution. Thus, we approximate every
grid location by storing only the first and second moments
of the measurements, and modeling the distribution as Gaus-
sian. As RSSI is closely related to RSRP, we also use this
approximation to store the RSSI.

In general, this approximation closely matches the empirical
measurements at each location. To quantify this, we computed
the Kolmogorov—Smirnov* statistic for each grid location in
the cell shown in Fig. 6(a), with the mean value of the RSRP
in each grid shown in Fig. 6(c). Over 80% of the grid locations
have Kolmogorov—Smirnov statistic that is less than 3%,
implying a close match between the Gaussian approximation
and the empirical distribution.

Therefore, in each grid location [, the mean value and
standard deviation of the RSRP and RSSI are stored for each
neighboring cell tower i, denoted as (uj,;, o7,;) and (17,
UZ 1)» respectively. Furthermore, from the frequency each grid
location is observed in GUMD, we compute the population
density at each grid location. This is computed for each
location I, and stored as P(I). To enable fast coverage map
lookups, these values are indexed by the cell tower identifier.

V. ONLINE PHASE: THE LOCALIZATION ALGORITHM

Based on the coverage map described in Section IV and
the test cases described in Section III, we now present an
algorithm to estimate the user’s location.

A. Overall Approach

The localization algorithm is based on assigning a weight
to each location [ € L. The weight represents the degree of
similarity (or difference) between the observed channel mea-
surements, and those computed at a given grid location. We
represent the weight function as d(I,{R, Q, P}), with larger
values implying a stronger match between the grid location [

4The Kolmogorov-Smirnov statistic measures the difference between an
empirical distribution of the RSRP and it’s Gaussian approximation. The value
of the statistic is the maximum value of the difference between the two CDFs
at any sample value. See [19] for more details.



and the channel measurements (R, Q,P). As every test case
is dependent on the observed measurements, {R, Q, P}, we
simplify the notation and refer to the weight as d(l). Based on
the computed weights at each grid location, we present two
methods to compute the user’s location, denoted as [g.

> d(l) -1

11,}4LE = argmax;c ~d(l), ZEVA S
> d)
lec

The Maximum Likelihood Estimation (MLE) of the user’s
location is commonly used in related works (e.g., [5]) and
is denoted llg/[LE. The second estimation method, {5, rep-
resents a Weighted Average (WA) of the user’s location. In
general, the MLE works well when the observed measure-
ments closely match a single grid location. However, in cases
where the observed measurements are close to a number of
nearby grid locations, the WA estimator provides a tradeoff
by proportionally averaging each grid location by its weight.

B. Computation of Weight Function, d()

Throughout this work we will compute d() as the condi-
tional probability that a user is in location /, given the observed
measurements:

dil)=P(RNANP|)-P), (1)

=P(RI|l) - P(Q|I) - P(P]l) - (1), 2)

where Eqn. (2) stems from assuming independence from
each of the channel measurement events. See Section III for
a description of the UMD measurements. We compute the

probability of each measurement observation in a given grid
location [ as follows:

> B(riD
recR;

N
PRI =]]

| = | 3)
where P(r|l) = 2P > |2 ;7 “h, @)
D
pem=1I | 5)
where P(q|l) = 2PN > ”g;g: o, 6)
N > fppl(dist(i,1) — p)
(Pl =T | == )

Py 1P|

Equations (3) and (5) compute the product of the likelihood
that each RSRP and RSSI measurement, respectively, occur
for all reported cells (indexed from 1 to N) at location .
Equations (4) and (6) stem from the normal approximation
of the RSRP and RSSI stored in each grid location. They

Fig. 7. The locations of 200,000 UMD test cases, collected at one network
edge site.
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Fig. 8. NBL system experimental performance evaluation of Weighted Aver-
age (WA) vs. Maximum Likelihood Estimation (MLE) methods in rural vs.
urban environments: CDF of (a) the localization error and (b) the localization
uncertainty (%).

compute the liklihood of an observed measurement r as the
probability that an instance of a normal random variable N
with standard deviations o is at least | — r| from its mean,
where u, o represent the training value stored at grid location
l. Equation (7) represents the weighting according to the
propagation delay distribution from Section IV-B3.

VI. SYSTEM EVALUATIONS

Using UMD test cases from a national 4G LTE network
(described in Section III-C), we now evaluate the NBL System,
which is composed of coverage maps (described in Section IV)
and localization algorithms (described in Section V).

We study the sensitivity of the NBL System to numerous
parameters including cell coverage area (e.g., rural vs. urban),
coverage map resolution, and number of RF measurements.
Finally, we demonstrate the improvements achieved by the
NBL System from incorporating location density as well using
crowd-sourced data instead of RF propagation models. Unless
stated otherwise, we utilize coverage maps generated from the
GUMD data with a zoom level of 19.

A. Test Case Generation

The UMD data is collected from a single network edge
site and covers portions of the midwestern and northeastern
USA as shown in Fig. 7. In total, we consider nearly 200,000
test cases from over 1,000 users. Each test case represents
a set of UMD records generated within 2s of one another
for a single user. To obtain ground truth location information,
we correlate each test case with GUMD records, storing the
location if a GUMD record was generated at approximately
the same time (within 2s). However, the GPS locations from
the GUMD may not always be accurate. For example, the
UMD and GUMD systems are not perfectly synchronized, and
thus aligning records by time stamps can result in the GPS
locations being off by a few seconds. In addition, since the
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GUMD is provided through a proprietary application, we do
not know the behavior of the application in scenarios with
limited GPS satellite visibility. Note that related works utilize
a small-scale evaluation where ground truth is collected as part
of the study [9], [5], [4]. Hence, we believe that the accuracy
of the NBL System may be higher than reported.

B. Localization Error vs. Cell Coverage Area

Fig. 8(a) shows the distribution of localization error
achieved by the NBL System in rural vs. urban areas.’ The
localization error in urban environments (median error of
~80m) is an order of magnitude better than in rural areas
(median error of ~750m). This follows the fact that the area
covered by urban cells is much smaller than the area covered
in rural cells (see Fig. 4).

Therefore, in Fig. 8(b), we present the localization un-
certainty, which shows the localization error normalized by
the cell’s coverage range. With the normalized metric, the
performance of the NBL System is similar in both rural and
urban environments (each achieving a median normalized error
of ~5%). To put this into context, a typical WiFi access point
with a range of 100m would have a corresponding localization
error of Sm.

C. Weighted Average vs. Maximum Likelihood Estimation

Figures 8(a) and 8(b) also consider the performance of the
two localization methods presented in Section V: Maximum
Likelihood Estimation (MLE) and Weighted Average (WA). In
practice, the WA method will have a better localization error in
dense cells, as the location estimate is effectively the centroid
of the most likely grid locations. However, for cells which do
not have a contiguous coverage area (e.g., a body of water
or uninhabited terrain in the middle of the cell’s coverage),
the WA method can result in poor location estimates. In
the large scale evaluations, Figs. 8(a) and 8(b) show that
across the entire network, the WA method has a slightly better
performance. Thus, for all following experiments, we focus
only on results from the WA method.

D. Coverage Map Generation
As described in Section IV, coverage maps can be generated
with varying resolution. Fig. 9(a) shows the median localiza-

SRural areas represent test cases generated in Pennsylvania and urban areas
represent test cases generated in the New York City area.
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Fig. 10. NBL System experimental performance evaluation of sensitivity to
number of cells reported in UMD measurements: CDF of (a) the localization
error and (b) the localization uncertainty (%).
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tion uncertainty for the NBL System when using coverage
maps with zoom levels between 16-21. Coverage maps which
are too coarse (e.g., zoom 16 and 17) lose accuracy due to
the granularity of the coverage maps. Coverage maps which
are too fine (e.g., zoom 20 and 21) are limited due to lack
of data collected in each grid location. Therefore, we found
that a zoom level of 18—19 has the best performance when
generating coverage maps from GUMD.

E. Propagation Models

As a means of comparison, Fig. 9(b) compares the perfor-
mance of the NBL System using data-driven coverage maps
from GUMD with a model-driven coverage map. The model-
driven coverage maps are generated based on RF propagation
and ray-tracing methods. For this method, we utilize a propri-
etary 3rd party solution developed by Forsk [20]. This method
uses prior knowledge of the cell specifications, including fre-
quency band, transmit power, transmission angle, and antenna
characteristics to generate estimates of the RF coverage of
each cell. The method is based on traditional ray-tracing and
RF propagation models [16]. Furthermore, it takes into account
known obstacles such as buildings and geographical landmarks
(i.e., hills, forests, etc.). As indicated in Fig. 9(b), the data-
driven approach has results in improvements in the localization
error ranging from 300-1000m.

F. Sensitivity to Number of Cell Measurements

Each RF measurement in a UMD record provides added in-
formation for the NBL System to incorporate into the location
estimate. Thus, as the number of measurements increases, so
too does the accuracy of the NBL System. In test cases with
3 or more measurements, the NBL System achieves a median
error of 50m and 300m for urban and rural areas, respectively.

Figures 10(a) and 10(b) show the performance of the NBL
System for all test cases separated by the number of cell
measurements in each test case. Most importantly, we note
that even when the number of UMD measurements is small
(less than 3), the NBL System is capable of estimating a user’s
location. This is in contrast to triangulation methods which
require 3 or more measurements.

With limited measurements, the NBL System is able to
achieve relatively-accurate localization due to the fact that the
NBL System incorporates the location density and propagation
distance. Figures 11(a) and 11(b) show the performance of the
NBL System for test cases with only 1 or 2 cell measurements,
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Fig. 11. NBL System experimental performance evaluation of importance of
pre-computed location densities: CDF of (a) the localization error and (b) the
localization uncertainty (%) for test cases with 1 or 2 cells with and without
incorporating the pre-computed location densities.

with and without using the location densities. In the 1 cell
case, the location densities improve the median performance
by nearly 500m and 7% localization uncertainty. The benefit
provided by incorporating location densities diminishes as
the number of cell measurements increase. Hence, in future
work, we will consider variations in the NBL System which
only incorporate location density when the number of cell
measurements is small.

G. Practical Considerations

In practice, the online phase of the NBL System will
be implemented and deployed at a network edge location.
The system must be capable of localizing a user as the
data is streamed from the network. Each location lookup is
independent and thus the NBL System is capable of being
deployed in parallel (e.g., via Hadoop).

Each location lookup requires finding the coverage map
information for every cell reported in the UMD records and
assigning weights to each of the locations in the coverage
area of the reported cells. In our prototype implementation
written in R, it typically takes up to 13ms to estimate a
users location. However, through simple optimizations such
as caching coverage maps in memory via a hash map and
utilizing a more performance-oriented language (i.e., C), we
expect that the system could localize a user in under a
millisecond. Based on users generating 1,000 UMD records
per day (see Fig. 3), a 1ms estimate of computation time
translates to 86,400 users handled per CPU core. Thus, a
moderate deployment of 100 cores per network edge location
would support nearly 90 million users. This demonstrates the
scalability of the NBL System.

VII. CONCLUSION AND FUTURE WORK

In this paper, we designed and developed the Network-
Based Localization (NBL) System for a 4G LTE network.
We leveraged a first-of-its-kind crowd-sourced channel mea-
surement campaign into the creation of RF coverage maps.
Then, we presented a localization algorithm to assign weights
to coverage map locations based on their similarity to mea-
surements in observed UMD records. We showed, via a large-
scale system evaluation, that the NBL System achieves a
median localization accuracy of 5% of the cells coverage range
(corresponding to S0m and 300m in urban and rural areas,
respectively). In addition, we analyzed the improvements

resulting from incorporating location density and using crowd-
sourced coverage maps instead of a propagation-model based
map. Furthermore, we demonstrated the practicality of the
system architecture, which can operate even when there is
only 1 cell measurement.

Future work will focus on dynamic coverage map genera-
tion. That is, we will develop schemes to continually update
the coverage map with crowd sourced data, assigning emphasis
to more recent measurements for each grid location.
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