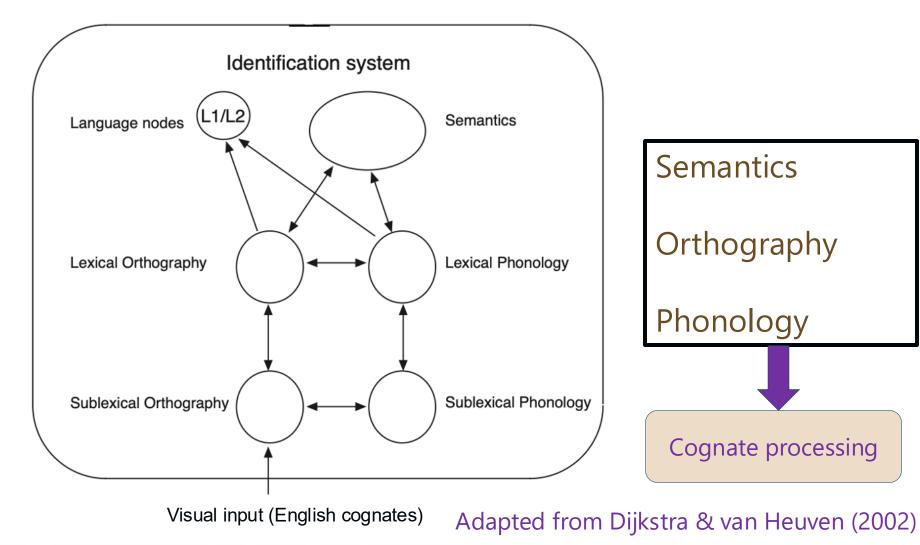


Revisiting the Influence of Phonological Similarity on Cognate Processing: Evidence from Cantonese-Japanese Bilinguals

Brian W. L. Wong, Shawn Hemelstrand, & Tomohiro Inoue ESCOP 2025

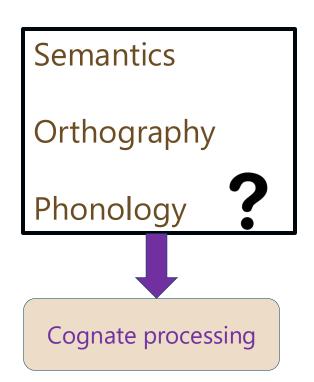
3rd September 2025

Cognate



Cognate Facilitation Effect

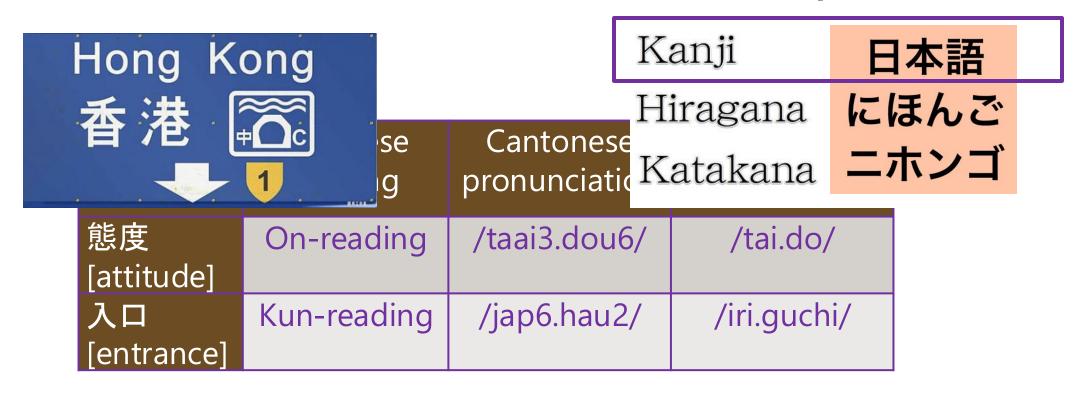
- Bilinguals recognize cognates faster (or more accurately) than non-cognates (e.g., Gollan et al., 1997; Nakayama et al., 2013, 2014; Peeters et al., 2013; Voga & Grainger, 2007; Xiong et al., 2020)


- Most prior research has focused on alphabetic scripts, with little work on logographic scripts (but see Xiong et al., 2020)

The Bilingual Interactive Activation+ (BIA+) model

Phonological Similarity Effects on Cognate Processing Involving Alphabetic Scripts

Facilitative	Inhibitory
Both languages alphabetic: Carrasco-Ortiz et al. (2021) Dijkstra et al. (2010) Haigh & Jared (2007) Lemhöfer & Dijkstra (2004)	Both languages alphabetic: Dijkstra et al. (1999) Frances et al. (2021; visual: inhibitory; auditory: facilitative)
One language alphabetic: Allen & Conklin (2013) Allen et al. (2021) Miwa et al. (2014)	



Introduction

Challenges in Assessing Phonological Similarity Using Alphabetic Scripts

Phonology
Orthography

Characteristics of Chinese and Japanese

Phonological Similarity Measures

Cognate	Cantonese pronunciation	Japanese pronunciation	Objective phonological similarity	Subjective phonological similarity (1: very different; 7: very similar)
態度 [attitude]	/taai3.dou6/	/tai.do/	14	6.13
人生 [life]	/jan4.sang1/	/jin.sei/	9	4.28
入口 [entrance]	/jap6.hau2/	/iri.guchi/	4	1.56

Research Question

1. How does phonological similarity influence cognate lexical decision in Cantonese-Japanese bilinguals?

Hypotheses

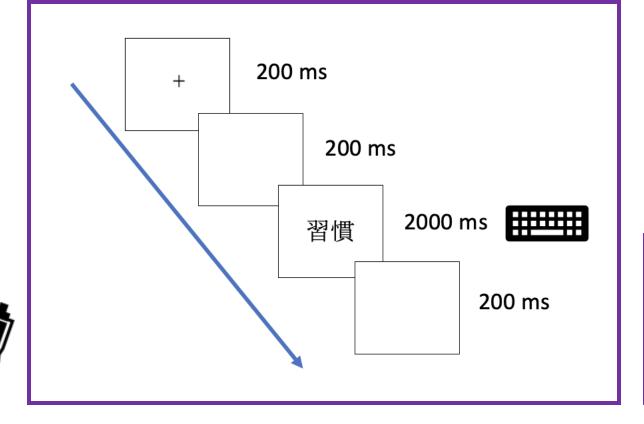
- 1. How does phonological similarity influence cognate lexical decision in Cantonese-Japanese bilinguals?
- → Phonological similarity would facilitate cognate lexical decision

L2 proficiency

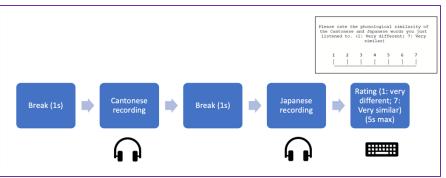
L1/L2 word frequency

Method

Participants


- N = 55 Cantonese–Japanese late bilingual adults
- Mean age: 24 years
- Japanese Language Proficiency Test: 37 passed N1, 18 passed N2

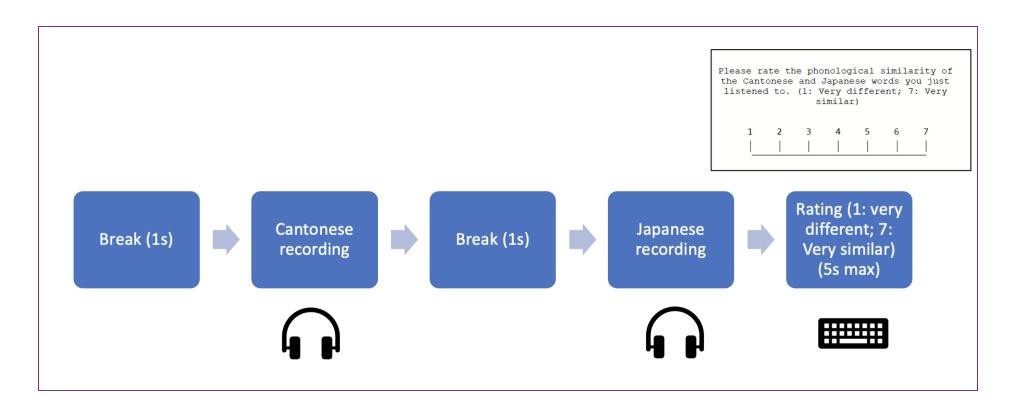
Stimuli of L2 (Japanese) Lexical Decision Task


Phonological similarity between Cantonese and Japanese

Procedure

1	生物
2	最中
3	火山
4	羽根
5	書類
6	行方
7	弁当
8	名前
9	硬貨
10	部屋

2. Japanese reading task



1. Japanese (L2) lexical decision task

3. Phonological similarity rating task

Procedure

3. Phonological similarity rating task

Data Analyses

Linear mixed-effects model

1. Inverse RT ~ **objective** phonological similarity * L2 proficiency + (1|subject) + (1|item)

2. Inverse RT ~ **subjective** phonological similarity * L2 proficiency + (1|subject) + (1|item)

Results

Main Findings

$$BF = 0.0002$$

$$BF = 0.001$$

Additional Results

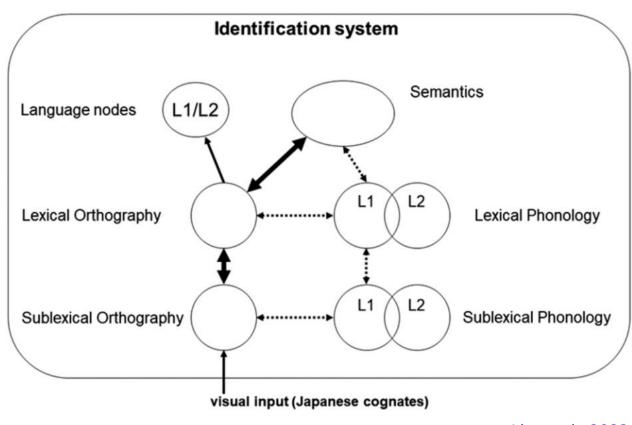
- Cognate facilitation effect: average RT of cognates (M = 724.9 ms, SD = 206.5 ms) < non-cognates (M = 746.2 ms, SD = 191.5 ms)
- Cognate facilitation effect was larger for participants with higher L2 proficiency
- Cognate RT was negatively associated with Cantonese word frequency, Japanese word frequency, and L2 proficiency
- Positive correlation between objective and subjective phonological similarity: r(118) = .52

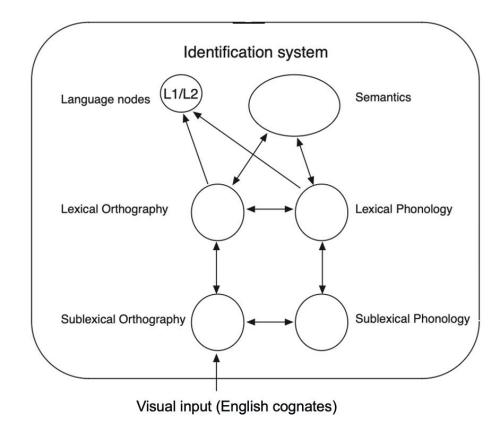
Discussion

Why Phonological Similarity Has Minimal Impact in Logographic Scripts?

- The graphic complexity of logographic scripts (Chang et al., 2018; Miton & Morin, 2021)

Transparent


Orthographic Transparency


Opaque

Phonological Similarity Effects on Cognate Processing Involving Logographic Scripts

Minimal effect	Inhibitory
Masked priming + lexical decision: Jiao et al., 2024 (with ERP) Zhang et al., 2019 Wang & Li, 2025	Phoneme monitoring task: Liu et al., 2024 (esp. for lower-proficiency Japanese learners)
Masked priming + word naming: Liu et al., 2023	

An Extended Version of the BIA+ Model for Chinese–Japanese Cognates

Liu et al., 2023

Adapted from Dijkstra & van Heuven (2002)

Acknowledgements

This work was supported by:

General Research Fund (Hong Kong SAR Research Grants Council)

Start-up Fund, The Chinese University of Hong Kong

Scan for paper

Shawn Hemelstrand

Tomohiro
Inoue

Questions?

References

- Allen, D. B., & Conklin, K. (2013). Cross-linguistic similarity and task demands in Japanese-English bilingual processing. PLOS ONE, 8(8), Article e72631.
- Allen, D. B, Conklin, K., & Miwa, K. (2021). Cross-linguistic lexical effects in different-script bilingual reading are modulated by task. *International Journal of Bilingualism*, 25(1),168–188. https://doi.org/10.1371/journal.pone.0072631
- Carrasco-Ortiz, H., Amengual, M., & Gries, S. T. (2021). Cross-language effects of phonological and orthographic similarity in cognate recognition: The role of language dominance. *Linguistic Approaches to Bilingualism, 11*(3), 389–417. https://doi.org/10.1075/lab.18095.car
- Chang, L.-Y., Chen, Y.-C., & Perfetti, C. A. (2018). GraphCom: A multidimensional measure of graphic complexity applied to 131 written languages. Behavior Research Methods, 50(1), 427–449. https://doi.org/10.3758/s13428-017-0881-y
- Dijkstra, T., Grainger, J., & Van Heuven, W. J. (1999). Recognition of cognates and interlingual homographs: The neglected role of phonology Journal of Memory and Language, 41(4), 496–518. https://doi.org/10.1006/jmla.1999.2654
- Dijkstra, T., Miwa, K., Brummelhuis, B., Sappelli, M., & Baayen, H. (2010). How cross-language similarity and task demands affect cognate recognition. *Journal of Memory and Language*, 62(3), 284–301. https://doi.org/10.1016/j.jml.2009.12.003
- Dijkstra, T., & Van Heuven, W. (2002). The architecture of the bilingual word recognition system: From identification to decision. Bilingualism: Language and Cognition, 5(3), 175–197. https://doi.org/10.1017/S1366728902003012
- Frances, C., Navarra-Barindelli, E., & Martin, C. D. (2021). Inhibitory and facilitatory effects of phonological and ortho-graphic similarity on L2 word recognition across modalities in bilinguals. *Scientific Reports, 11*, Article 12812. https://doi.org/10.1038/s41598-021-92259-z
- Gollan, T. H., Forster, K. I., & Frost, R. (1997). Translation priming with different scripts: Masked priming with cognates and noncognates in Hebrew–English bilinguals. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 23*(5), 1122–1139. https://doi.org/10.1037/0278-7393.23.5.1122
- Haigh, C. A., & Jared, D. (2007). The activation of phonological representations by bilinguals while reading silently: Evidence from interlingual homophones. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 33*(4), 623–644. https://doi.org/10.1037/0278-7393.33.4.623
- Jiao, Z., Du, L., Wang, Y. & Li, Y. (2024). Visual word recognition of Chinese–Japanese bilinguals: limited role of phonology. Frontiers in Psychology, 14, 1318798. https://doi.org/10.3389/fpsyg.2023.1318798
- Lemhöfer, K., & Dijkstra, T. (2004). Recognizing cognates and interlingual homographs: Effects of code similarity in language-specific and generalized lexical decision. *Memory& Cognition*, 32(4), 533–550. https://doi.org/10.3758/bf03195845
- Liu, C., Wanner-Kawahara, J., Yoshihara, M., Lupker, S. J., &Nakayama, M. (2023). Cognate translation priming with Chinese–Japanese bilinguals: No effect of interlingual phonological similarity. *Journal of Experimental Psychology: Learning, Memory, and Cognition, 49*(11), 1823–1843. https://doi.org/10.1037/xlm0001240
- Liu, X., Zhang, Y., Zeng, B., Liu, Y., & Wang, X. (2024). The role of phonological overlap and cognates in dual logographic bilinguals' phonological processing. Lingua, 311, 103831. https://doi.org/10.1016/j.lingua.2024.103831
- Miton, H., & Morin, O. (2021). Graphic complexity in writing systems. Cognition, 214, Article 104771. https://doi.org/10.1016/j.cognition.2021.104771
- Miwa, K., Dijkstra, T., Bolger, P., & Baayen, R. H. (2014).Reading English with Japanese in mind: Effects of frequency, phonology, and meaning in different-script bilinguals. *Bilingualism: Language and Cognition, 17*(3),445–463. https://doi.org/10.1017/s1366728913000576
- Peeters, D., Dijkstra, T., & Grainger, J. (2013). The representation and processing of identical cognates by late bilinguals: RT and ERP effects. Journal of Memory and Language, 68(4), 315–332. https://doi.org/10.1016/j.jml.2012.12.003
- Voga, M., & Grainger, J. (2007). Cognate status and cross-script translation priming. Memory & Cognition, 35(5), 938–952. https://doi.org/10.3758/BF03193467
- Xiong, K., Verdonschot, R. G., & Tamaoka, K. (2020). The time course of brain activity in reading identical cognates: An ERP study of Chinese-Japanese bilinguals. *Journal of Neurolinguistics*, 55, 100911. https://doi.org/10.1016/j.jneuroling.2020.100911
- Wang, X., & Li, J. (2025). Asymmetrical cognate facilitation effects: the orthographic depth hypothesis revisited in bi-script readers. Bilingualism: Language and Cognition, 1–11. https://doi.org/10.1017/s1366728925100217
- Zhang, J., Wu, C., Zhou, T., & Meng, Y. (2019). Cognate facilitation priming effect is modulated by writing system: Evidence from Chinese-English bilinguals. *International Journal of Bilingualism*, 23(2), 553–566. https://doi.org/10.1177/1367006917749062
- Zhao, X., Xiong, K., & Kiyama, S. (2024). Cross-language facilitatory and inhibitory effects in the naming of Japanese words by Chinese-Japanese bilinguals. Journal of Japanese Linguistics, 40(2), 237–258. https://doi.org/10.1515/jjl-2024-2016